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GENERAL INTRODUCTION 

After its first decade of development and application (1), inductively coupled plasma-

mass spectrometry (ICP-MS) continues to gain popularity because of its low detection limits 

( 1 - 50 ng L"'), easy determination of isotopic ratios, and simple mass spectra from analyte 

elements. Now this technique has gained rapid and wide acceptance in the analytical 

community. There are over 600 instruments worldwide, which are being used in a range 

of fields for the analysis of geological, environment, biological, metallurgical, food, medical, 

and industrial samples (2-42). However, the analytical performance of ICP-MS is still 

limited by problems like spectral overlap from polyatomic ions (e.g., ArO^ and ArCl^), 

noise in the background, matrix effects, and clogging of the sampling orifice by deposited 

solids (2). 

The ICP is an intense source of both ions and photons and emits some strong lines 

in the vacuum ultraviolet (43). These photons are usually screened from the detector by 

blocking the line-of-sight through the device with an optical baffle incorporated into the ion 

lens (44-46). Alternatively, the multiplier or mass analyzer can be offset far from the axis, 

with appropriate optics to deflect the ions (47-50). Despite these measures to screen the 

detector from the plasma, most quadrupole-based ICP-MS instruments still have a substantial 

continuum background (i.e., background at a m/z value devoid of ions) of 5 to 20 counts s '. 

Further attenuation of the background is obviously desirable. 

The diameter of the sampling orifice (usually ~ 1 mm) affects signal characteristics 

strongly in ICP-MS. For example, Vaughan and Horlick reported that the count rate of 
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monatomic analyte ions (M^) increased by a factor of ten and the ratio of oxide ions to 

analyte ions (MO^/M^) changed greatly when the diameter of the sampler was altered from 

0.51 to 0.94 mm (51). Increasing the size of the sampling orifice would also improve the 

tolerance of the sampler to clogging from solids deposited from the sample (52). 

The most abundant species in the plasma are AT, H, and O. These species may 

combine with each other or with elements from the analyte matrix. The major elements 

present in the solvents or acids used during sample preparation (e.g., N and CI) also 

participate in these reactions. Many polyatomic ion peaks can therefore occur but these are 

significant only up to about 82 m/z. A number of papers (1,2, 53-58) have documented the 

basic background spectral features and polyatomic species observed in ICP-MS. The extent 

of polyatomic ion formation depends on many factors including extraction geometry, 

operating parameters for plasma and nebulizer system and, most importantly, on the nature 

of the acid and sample matrix (59). In addition, the extent of polyatomic ion formation can 

also depend on the specific instrument design (59,60,61), 

The ion current through the skimmer is typically 1 mA. This current is balanced by 

an equal electron current in the plasma and in the supersonic jet. In these regions the beam 

acts as if it were electrically neutral (62). However, as the beam leaves the skimmer, the 

electric field established by the lens collects ions and repels electrons, the beam no longer 

acts as if it were neutral, and the ions begin to repel each other. This effect is called space 

charge and should become substantial in ICP-MS at a total beam current of the order of 1 

fiA (63, 64), roughly three orders of magnitude below the actual beam current cited above. 

Generally, the ions can be detected at the ratio of 1/10®, e.g., if 10® ions pass through the 
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skimmer, only 1 ion reaches the detector. This considerable ion loss results mostly from 

space charge. Other problems caused by the space charge effect are matrix interferences and 

mass discrimination. In the presence of a matrix elements, heavy analyte ions are suppressed 

less severely than light ones. Heavy matrix ions suppress analyte signals more extensively 

than light matrix ions (64-68). Accelerating the ions to higher energies could improve ion 

transmission and attenuate the mass discrimination by overcoming the space charge problem. 

This method has been adopted in high resolution ICP-MS devices that use magnetic sector 

mass analyzers (49,70), but matrix effects and mass discrimination with these instruments 

have not been reported. Using an extra metal cone at a high negative voltage as the first ion 

lens might increase ion sensitivity, especially for low mass ions, thereby reducing the mass 

discrimination problem (71,72). 

Matrix effects are also influenced by ion lens geometry (73,74) and lens potentials 

(66,73). Caruso and co-workers have described an interesting and potentially valuable 

scheme in which the ion lens voltages are adjusted to maximize the analyte signal with the 

sample matrix present (75,76). This procedure can reduce the extent of the matrix effect 

significantly. Ross and Hieftje (77) removed the second stage ion lens electrodes and photon 

stop. The sensitivity and detection limits with this arrangement were approximately the same 

as those measured with their conventional ion lens (77-79), but matrix induced interference 

effects were almost eliminated (77). 

Mass-resolved ions leaving the analyzer are generally detected by a Channeltron 

electron multiplier in the pulse counting mode. Although good analytical performance can 

certainly be obtained with Channeltron electron multiplier, they do have several undesirable 
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characteristics as detectors for ICP-MS. A Channeltron has a limited lifetime of 

approximately 1.5 years under normal an^ytical use. The response of a Channeltron is 

linear up to count rates of approximately 1x10® counts s '; above this value, calibration 

curves tend to droop. 

Several other detectors have been tried with ICP-MS. These include discrete dynode 

electron multipliers (80) and the coniphot detector in the Nermag instrument. The Daly 

detector (81-83) was used with ICP-MS by Huang, Jiang, and Houk (84). The Daly detector 

offers some potential advantages in the problem areas found for the Channeltron detector. 

Huang et al (84) reported that the Daly detector gave modest improvements in linear range 

and precision. Furthermore, the gain of the Daly detector should not deteriorate with time. 

However, the pressure in the detector chamber on ICP-MS instruments is usually about 10"^-

10^ torr. At these pressures, a very high potential could not be utilized because of electrical 

discharge. Even at the potential that yielded the best signal to noise ratio (5 kV), the 

background was 500 counts s"'. Sensitivities and detection limits were similar to those 

obtained with the Channeltron electron multiplier with their ICP-MS facility (84). This high 

background probably comes from the electrical discharge of residual gas in the detection 

chamber. Reducing the pressure in the detector chamber would reduce the discharge, and 

thus reduce the background. Furthermore, if photons from the plasma can be totally 

blocked, the continuum background detected either by a Channeltron detector or by a Daly 

detector would be reduced. 

Mass spectrometry is a very sensitive method for analytical applications. Ion 

deposition (85-98) and ion implantation (99-103) with conventional ion sources are also well-
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established techniques. Both techniques employ an ion source and mass analyzer, but in the 

former technique mass-selected ions are detected for calculating the amount of the elements 

in the original sample. In the latter method, mass-selected ions are accumulated on a target 

for material synthesis or modification. 

Direct ion beam deposition is a thin film formation method which exploits a mass-

separated, low energy ion beam of the film constituents. Intensive work has already been 

reported for a variety of materials including metal and semiconductors materials (85-98). 

If the ions are accelerated to high ion energies, they penetrate more deeply into the solid 

target material, and ion implantation occurs. The principles and applications of ion 

implantation have been investigated and reported in detail elsewhere (99-103). 

Use of ICP-MS as an ion deposition device could extend the scope of ion deposition 

to new studies and applications because of its multielement capabilities. One critical problem 

for using an ICP as an ion source for ion deposition or ion implantation is the ion beam 

intensity available. In order to deposit the thin film on the substrate within a reasonable 

time, the ion beam intensity should be increased as much as possible. On the other hand, 

the methods developed to intensify the ion beam may also be useful for analytical purposes 

i.e., to increase sensitivity for analyte ions in ICP-MS. 

This dissertation describes instrumental methods for enhancement of ion transmission 

and reduction of background and interference effects in ICP-MS. The improvements in the 

ICP-MS instrument involve enlarging the orifices in the sampling interface, floating parts of 

the interface, and using offset ion optics, a four-stage vacuum system, and a Daly detector. 

Ion beam deposition or ion implantation using ICP-MS as an ion source is also described in 
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this dissertation. This dissertation is presented such that each paper stands independent of 

the others as a complete scientific manuscript including figures, tables, and literature cited. 

Additional literature citations from the general introduction and the summary are given after 

the summary. 

The first paper describes instrumentation, ion trajectories, and detector performance 

of the new home made ICP-MS with a enlarged sampling orifice and offset ion lens. A new 

four-stage vacuum system is constructed. A tube is used as the ion exit lens between the 

third and fourth vacuum chambers. The pressure in the detector chamber is lower than in 

a usual ICP-MS vacuum system, so the Daly detector can be successfully used. The large 

sampling orifice (1.31 mm diameter) increases ion signals and minimizes solid condensation 

on the orifice. Some ion lens electrodes are offset from the central axis, which greatly 

reduces continuum background to close to the dark current level for a Channeltron detector 

and to only a few counts s ' for the Daly detector. Entrance and exit RF-only quadrupole 

rods are used in this home made instrument for improving ion transmission and ion beam 

intensity. 

Polyatomic ion interferences and matrix effects with this ICP-MS instrument are 

described in the second paper. Polyatomic ion peaks such as ArO"*", ArN"^, ArCl^, and Ara^ 

are greatly suppressed compared to those seen on any other ICP-MS device. Moreover, 

when the first cylindrical ion lens electrode is grounded, matrix interference effects can be 

greatly reduced without sacrificing too much sensitivity for analyte ions. Alternatively, 

matrix effects can also be mitigated by re-adjusting the voltage applied to the first lens with 

the matrix present. 
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The third paper describes an electrically floating interface. Several different 

arrangements are investigated. Ion transmission is improved by a factor of at least 4 to 6. 

The upper end of linearity of the calibration curve (i.e., a plot of ion signal vs. concentration 

of the element of interested in the sample) is extended. Mass discrimination is greatly 

reduced. 

The final paper describes a new application of ICP-MS: ion beam deposition or ion 

implantation. The advantages of ICP-MS for thin film growth are described. Two critical 

shortcomings of ICP-MS for ion deposition are the low intensity of the ion beam and the 

relatively high residual pressure in the deposition chamber. Experimental methods to 

improve the performance of ICP-MS in these areas are described. Eventually, a new method 

of modifying materials or growing thin films by ion deposition or ion implantation using 

ICP-MS as an ion source is developed. Primary data shown in this section indicate that ICP-

MS has a bright future for material modification. 
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PAPER I. 

INDUCTIVELY COUPLED PLASMA MASS SPECTROMETRY 

WITH AN ENLARGED SAMPLING ORIFICE AND OFFSET ION LENS 

I. ION TRAJECTORIES AND DETECTOR PERFORMANCE 
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INTRODUCTION 

ICP-MS has become an important technique for elemental and isotopic analysis 

because of its high selectivity and excellent detection limits (1 - SO pptr). Despite these 

features, the analytical performance of ICP-MS is still limited by problems like spectral 

overlap from polyatomic ions (e.g., ArO^ and ArCl^), noise in the background, matrix 

effects and clogging of the sampling orifice by deposited solids (1). This paper and its 

companion (2) address instrumental studies designed to improve the performance of ICP-MS 

in these areas. 

The ICP is an intense source of both ions and photons and emits some strong lines 

in the vacuum ultraviolet (3). These photons are usually screened from the detector by 

blocking the line-of-sight through the device with an optical baffle incorporated into the ion 

lens (4-6). Alternatively, the multiplier or mass analyzer can be offset far from the axis, 

with appropriate optics to deflect the ions (7-10). Despite these measures to screen the 

detector from the plasma, most quadrupole-based ICP-MS instruments still have a substantial 

continuum background (i.e., background at a m/z value devoid of ions) of 5 to 20 counts s \ 

The cause(s) of this remaining background are not known precisely. Perhaps a few ions pass 

straight down the axis of the quadrupole and are not filtered regardless of the m/z setting. 

Alternatively, photons that are created when ions with unstable paths strike the rods may 

reach the detector. Further attenuation of the background is obviously desirable regardless 

of its cause. 

The diameter of the sampling orifice (usually ~ 1 mm) affects signal characteristics 
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strongly in ICP-MS. For example, Vaughan and Horlick reported that the count rate of 

monatomic analyte ions (M^) increased by a factor of ten and the ratio of oxide ions to 

analyte ions (MO^/M^) changed greatly when the diameter of the sampler was altered from 

0.51 to 0.94 mm (11). Increasing the size of the sampling orifice would also be expected 

to improve the tolerance of the sampler to clogging from solids deposited from the sample 

(12). 

In this paper, the performance of a new ion lens is described. The ions from the 

skimmer are deflected and then brought back to the central axis. The lens electrodes 

themselves block photons effectively from the detector. A large sampling orifice (1.31 mm 

diam.) improves ion signals and resists plugging. These experiments are performed on an 

ICP-MS device with four differentially pumped chambers, as opposed to the usual three, to 

handle the additional gas load from the larger sampling aperture. With the four-stage 

chamber, the pressure in the detector chamber is low enough for proper use of the Daly 

detector (13,14). The relative merits of this detection method are compared with those 

obtained with a Channeltron electron multiplier. The companion paper (2) describes spectral 

overlap and matrix interferences with the new ICP-MS instrument, both of which are 

substantially less severe than those seen with most other ICP-MS devices. 
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EXPERIMENTAL 

Vacuum System 

The sampling interface and MS part of the apparatus are depicted in Figure 1. 

Instrumental components and operating conditions are identified in Table I. The basic 

features of the ultrasonic nebulizer (16,17), ICP, and sampling interface (18,19) have been 

described previously. The expansion chamber was pumped by a rotary pump (TRIVAC 

Model D30A, Leybold Vacuum Products, Inc.; pumping speed, 10 L s '). The ion lens 

chamber was pumped by a diffusion pump equipped with a liquid nitrogen cooled baffle 

(Model VHS-6, Varian Associates; net pumping speed, 1600 L s '). The quadrupole and 

detector chambers were pumped by turbo molecular pumps (Model TMP 360V, Leybold 

Vacuum Products Inc.; pumping speed, 400 L s"'). Unlike most ICP-MS devices, there was 

no isolation valve behind the skimmer. Instead, slide valves to the rotary pump and the 

diffusion pump were closed and the turbomolecular pumps were turned off to vent the 

chamber for maintenance. A small Viton disk was pressed gently onto the outside of the 

sampler to seal off the system for evacuation after service. 

Ion Sampling Interface 

A scale drawing of the ICP-MS sampling interface is shown in Figure 1. The 

sampling cone (A, Figure 1) was made from nickel. The orifice diameter was enlarged to 

1.31 mm from the usual 1.0 mm. The diameter of the skimmer orifice was also 1.31 mm. 

The angles and other dimensions of the sampler and skimmer were described elsewhere (18). 
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The distance between the sampler orifice and skimmer orifice was varied by changing the 

thickness of the copper spacer between the skimmer base and the vacuum chamber until the 

best signals were obtained for Co^ and Ho^. The skimmer position was re-optimized when 

each different sampling orifice size was drilled. Eventually, the sampler-skimmer spacing 

was set to 11 mm with the 1.31 mm sampling orifice and skimmer orifice. At this position, 

the skimmer tip was 2/3 of the way from the sampling orifice to the onset of the Mach disk, 

which also yielded optimum sensitivity for Douglas and French (19). The copper flange 

which mounted the skimmer to the vacuum chamber (Figure 1) was water cooled. 

Ion Lens 

The new ion lens is shown in Figure 2. Ions passing the skimmer orifice (A, Figure 

2) entered the first stainless steel cylinder (1, Figure 2). Numerous holes were drilled in the 

side wall of the cylinder, so that neutral atoms could be evacuated. The second electrode 

of the lens (2, Figure 2) was a copper cone with a circular orifice of 2.5 mm diameter. 

After the copper cone, ions passed a series of circular apertures (6.35 mm diameter) in 

stainless steel plates (3-6, Figure 2) which were 1.65 mm thick. Lens 3 was made thicker 

by putting three plates together. The spacing between each lens was 2.5 mm. Thinner 

spacers between lenses were tried but yielded poorer ion signals. Ions passing lens 6 were 

bent back further to center to pass the differential pumping orifice (7, Figure 2) which was 

a tube 2.50 mm diam. x 6.4 mm long. The ICP, sampler, skimmer, and quadrupole were 

kept on the same center line. 

Separate voltages (V,, Vg, Vj, V4, V5, Vg, V?) were applied to the ion lens electrodes. 
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For maximum transmission of (a typical ion in the middle of the mass range for 

atomic ions), the optimum voltages were: V„ +3 V; Vg, -250 V; V3 + 1 V; V4, + 18 V; 

V5, -250 V; Ve, + 18 V; -180 V; and Vg, -20 V. It is interesting that applying voltages 

of opposite polarity to adjacent lenses tended to yield maximum ion transmission. This lens 

may operate somewhat like the periodic ion lens used to focus high density ion beams (20). 

RF-only Ouadrupole and Exit Lens 

As shown in Figure 1, short RF-only quadrupoles were mounted both before and after 

the mass analyzer. Both RF-only quadrupoles had the same rod diameter (1.60 cm) as the 

mass analyzer quadrupole and were separated from the analyzer by a gap of 1.25 mm. A 

single RF power supply was used to drive the three quadrupoles. The two sets of RF-only 

quadrupole rods were connected in parallel to each other. High voltage capacitors (50 pF, 

7.5 kV max.) were connected between the RF-only rods and the mass analyzer rods to shield 

the DC component from the RF-only quadrupoles. The mean DC bias of the two RF-only 

quadrupoles was applied through resistances (1 MO) and was the same and could be adjusted 

differently from that of mass analyzer. 

Ions leaving the exit RF-only quadrupole then passed through a long, thin stainless 

steel tube (2.5 cm x 6 mm inside diam.) called the exit lens. This lens is shown as L in 

Figure 1. The exit lens was sealed with an electrically insulating gasket and was maintained 

at -50 V. The exit lens also served as the differential pumping orifice between the 

quadrupole and detector chambers. Because of this conductance restriction and the separate 

pump used, the pressure in the detector chamber was quite low (1.5 x 10"' torr) during 
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operation. This additional pumping stage helped compensate for the high gas load through 

the large sampler and skimmer. 

Channeltron Electron Multiplier 

The basic features of the Channeltron electron multiplier have been described 

elsewhere (21). The detector arrangement (M, Figure 1) is shown in Figure 1. The 

multiplier and ion deflector (N, Figure 1) were offset above and below the center line of the 

sampler, skimmer, and quadrupoles. The Channeltron was shielded in a grounded, stainless 

steel case. A stainless steel plate with a circular aperture (1.25 cm diam.) was placed in 

front of the stainless steel case and was used to attract ions into the Channeltron. This plate 

was 5.0 cm from the center line through the quadrupole and was operated with an applied 

potential of -250 V. The deflecting plate (see Figure 1) was aligned with the mouth of the 

Channeltron, was placed 2.5 cm below the ion exit lens, and was operated at +240 V. 

Dalv Detector 

The basic features of the Daly detector and the procedures for preparing the 

aluminum target and scintillator for ICP-MS have been described (13,14). The detector 

assembly is shown in Figure 3. The target (M, Figure 3) was 2.5 cm above the center line 

through the quadrupole and the scintillator was 5.7 cm below it. The PMT assembly (N, 

Figure 3) also has been described (5). The RF leads to the mass filter did not pass through 

the detector chamber so that RF radiation from the quadrupole power supply did not interfere 

with the detector. 



www.manaraa.com

15 

Data Acquisition 

Detection limits were measured as described in reference 14. The detection limit is 

generally considered the solution concentration necessary to yield a net peak height 

equivalent to 3 times the standard deviation of the background. However, the background 

with the Channeltron detector was so low that the standard deviation for most elements was 

below 1 count s"' and was difficult to measure directly. Therefore, the detection limit was 

estimated to be the solution concentration necessary to yield a net peak height equivalent to 

3 times the estimated standard deviation, where B was the background count rate. 

Calibration curves were determined in the multichannel scanning mode (ref. 1 p. 44) using 

the signal peak height. The dwell time was 50 fis address"' for 4096 addresses over a mass 

window of 20 m/z units wide. Fifty such sweeps were averaged. The mass analyzer was 

operated at unit mass resolution in the mass range measured. 

Ion kinetic energies were measured by applying a positive stopping voltage as the 

mean DC bias to the quadrupole mass filter (22-24). The stopping voltage necessary to 

attenuate the ion signal to 5% of the original signal level was measured and is referred to 

as "maximum ion energy" subsequently. 

Ion Trajectories 

The trajectories through the ion lens were modeled with SIMION (a computer 

program for ion trajectory simulation) (25) on an IBM personal computer. No corrections 

for space-charge effects (18,26,27) were used. Trajectories were calculated for initial ion 

kinetic energies of 4 to 11 eV to account for the dependence of kinetic energy on m/z ratio 



www.manaraa.com

16 

(23). The ion kinetic energy of 7 eV was used for the rest of ion trajectory calculations. 

The sloped surfaces of the skimmer and conical ion lens were approximated by small 

interconnected squares echeloned at 45°. 

Solutions and Standards 

Standard solutions of Co, Cu, and Mo were 0.5 mg L ' (ppm), Zn was 1.0 ppm, and 

Y, Rh, Cs, Ce, Ho, Tl, Pb, and U were 0.2 ppm and were prepared by diluting aliquots of 

commercial stock solutions (ICXX) ppm, Fisher Scientific) with distilled deionized water (18 

MO, Bamstead). 
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RESULTS AND DISCUSSION 

Diameter of Sampling Orifice 

These experiments were performed by drilling out the circular aperture in a single 

nickel cone progressively. After each drilling, the separation between sampler and skimmer 

was adjusted empirically to maximize ion signal by substituting various spacers of different 

thickness behind the skimmer (Figure 2). This procedure was necessary because the 

background pressure increased and the supersonic jet shrank when the sampling orifice was 

enlarged (18,19,28), and thus the optimum separation between sampler and skimmer changed 

as well. 

The effect of sampling orifice diameter on ion signals for ^^Co^ and is shown 

in Figure 4. The signals increased by a factor of 8 when the sampling orifice was enlarged 

from 0.79 to 1.31 mm diam. Each point in Figure 4 was measured at the sampler-skimmer 

separation that yielded maximum ion signal for each orifice diameter, as described in the 

previous paragraph. Vaughan and Horlick observed a similar increase in ion signal when 

they increased the diameter of the sampling orifice from 0.51 mm to 0.94 mm on their Sciex 

instrument (11). The background pressure in the expansion chamber increased by a factor 

of 2.4 for the range of sampler diameters studied in the present work. 

For three of the orifice diameters chosen, the pressure in the expansion chamber was 

also monitored as a function of time during continuous nebulization of a concentrated 

solution of yttrium (1000 ppm). This experiment was intended to evaluate the effect of 

sampling orifice size on tolerance to clogging. These results are shown in Figure 5. Each 
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pressure measurement was normalized to the pressure obtained at time zero, i.e., before the 

yttrium solution was introduced. With the 1.31 mm diam. sampler, the pressure did not 

decrease noticeably over 100 minutes. In contrast, the pressure decreases seen in Figure 5 

for the smaller samplers indicated that they plugged readily. Note that these studies were 

conducted with a continuous flow ultrasonic nebulizer, which transported material to the 

plasma at a rate at least 10 times greater than that obtained with a conventional pneumatic 

nebulizer (16,17,29). Thus, the 0.1 % Y solution used here was probably the equivalent of 

a 1 % solution from a conventional nebulizer in terms of the rate of transport of material, 

which governed the deposition and clogging problems. At any rate, the 1.31 mm diam. 

sampler used here proved quite resistant to clogging from deposited solids. This sampler 

was used for all the studies reported subsequently in this paper and its companion (2). 

Position of First Ion Lens 

Calculations by Olivares and Houk (18), Gillson et al. (26) and Tanner (27) indicate 

that efficient collection of ions leaving the skimmer is hampered by space charge effects, 

which disperse the ion beam due to the very high current (~ 1 mA) therein. We attempted 

to mitigate these effects and improve the collection efficiency by thrusting the first ion lens 

(1, Figure 2) as far as possible into the skimmer. A similar arrangement is employed in the 

high resolution ICP-MS device marketed by VG Elemental (30). As shown in Figure 6, a 

substantial increase in ion signal (by a factor of two to five) was seen when the separation 

between the skimmer tip and the entrance to the first lens was reduced to 2.4 cm. At this 

position, the mouth of the first lens was only ~ 5 mm from the nearest surface of the 
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skimmer wall. Closer separations were tried, but the voltage output of the power supply for 

the first lens then became unstable, possibly due to an electrical discharge between the ion 

lens and the skimmer wall or to a high current flow to the lens. Drilling holes through the 

wall of the first ion lens, as shown in Figure 2, also helped prevent this discharge problem. 

The 2.4 cm separation was used for all subsequent work. 

Ion Trajectories and Kinetic Energies 

SIMION was used to model ion trajectories through the lens. First, the effect of ion 

kinetic energy on trajectory is shown in Figure 7. Ions that started on center with kinetic 

energies of 4 eV to 11 eV were focussed at a common point inside lens 5 and were then 

deflected through the differential pumping orifice. After the differential pumping orifice, 

the ion paths diverged, so the efficiency with which ions of different energy were injected 

into the mass filter varied somewhat. 

This range of energies of 4 eV to 11 eV corresponded closely to that observed for 

ions of different m/z with this instrument (Figure 8). The increase in ion energy with m/z 

was caused by the acceleration of all ions to the same velocity in the supersonic jet, as 

described by Fulford and Douglas (23). The measured kinetic energy for Li+ was slightly 

above the line through the energies of the heavier ions, again in agreement with the results 

of Fulford and Douglas (23) and Tanner (27). The latter author has attributed the slightly 

high value of kinetic energy for light ions such as Li^ to space charge effects behind the 

skimmer. 

The trajectories in Figure 9 illustrated the fate of ions that left the skimmer either at 
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an angle or displaced radially relative to the central axis. SIMION indicated that such ions 

were focussed in front of the conical lens, but these simulations ignored space charge effects, 

which were probably quite substantial here (26,27). Even if off-axis ions entered the conical 

lens efficiently, they then struck one of the downstream lens electrodes and were not 

transmitted to the mass analyzer. Similar behavior was seen for off-axis ions of different 

kinetic energy than the 7 eV ions selected for Figure 9. 

The spatial selectivity of this lens for on-axis ions contrasted strongly with the 

behavior of the lens in Perldn Elmer SCIEX ICP-MS instruments. Because of the shadow 

stop and photon stop, this latter lens transmitted only ions that left the skimmer off-axis (31). 

Detailed simulations have not been reported for other lens assemblies, but it was likely that 

all lenses with a central stop to block photons showed the same general behavior as the 

Perldn Elmer SCIEX lens, at least to some extent. 

It is also important to note another interesting difference between these ion optical 

simulations and those of Vaughan and Horlick (31), The voltages used in the SIMION 

calculations in the present work were close to (i.e., within a few volts) of the ones that 

yielded maximum ion transmission experimentally. In previous simulations with the Perldn 

Elmer SCIEX lens, the voltages required by SIMION for ion transmission differed 

substantially from those actually used on the instrument (31), although the general 

conclusions drawn as to the overall behavior of characteristics of this lens were probably still 

reasonable. 
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Effect of Ion Lens Voltages on Mass Discrimination 

The variation of ion energy with m/z (Figure 8) is one cause of mass discrimination 

in ICP-MS. This problem complicates selection of a single set of lens voltages for 

multielement analysis. Similar effects were seen with the offset lens studied in the present 

work, as shown in Figures 10 - 12. For simplicity, these figures were referred to as 

"focussing curves. " For each figure, only one lens voltage was varied at a time. The other 

lenses were kept at the voltages that yield maximum transmission for Rh^. 

Inspection of these focussing curves showed that their overall shapes and the order 

of voltages corresponding to maximum transmission for different elements varied for the 

three electrodes of the ion lens. For example, for the third electrode (V3, Figure 10), the 

order of voltages that yielded maximum transmission was U"^ < Rh+ < Li^. For the fourth 

electrode (V4, Figure 11), the order was Rh^ < Li+ < U"^, whereas for the sixth electrode 

(Vg, Figure 12) the order was Rh^ < U"*" < Li^. For the sixth electrode (Figure 12), mass 

discrimination was minimal at a voltage of +35 V, i.e., the signals for Li^, Rh+ and U"^ 

were all near their maxima at the same applied voltage. In contrast, some compromise in 

transmission was necessary when selecting the voltages applied to the third and fourth 

electrodes. The focussing curve for Li^ was substantially broader than those for Rh^ and 

U"^ for electrodes 3 and 6, whereas had the broadest focussing curve for electrode 4. 

Focussing curves for the negative electrodes (V2, V5 and V? in Figure 2) were broad and 

featureless and were therefore not reported here. 
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Background and Signal with Channeltron Electron Multiplier 

The detector arrangement shown in Figure 1 was used for these studies. 

Measurements of dark current (i.e., with the sampler closed) and background are listed in 

Table n. These values were so low that long counting times (10 min) were required to 

obtain useful counting statistics. The dark current was —0.3 counts s \ Next, ions were 

sampled from the ICP with the mass analyzer set at a DC offset voltage of -1 V. In this 

condition, ions were injected into the mass analyzer, but the m/z window was set to a high 

value in a part of the spectrum devoid of ions. The background increased only slightly to 

~ 0.4 counts s"'. Finally, a high positive offset voltage (+50 V) was applied to the 

quadrupole rods so that ions could not enter the mass filter. The background did not change 

perceptibly, which indicated that the background was not caused by ions in or leaking out 

of the mass analyzer. Also, the background did not change noticeably as aerosol gas flow 

rate, plasma power, or ion lens voltages were changed. Our general experience with other 

lenses has been that adjusting the voltages to maximize ion transmission also induced an 

increase in background, but this problem was not seen with the offset lens described in the 

present paper. 

These background values were much lower than those obtained on other quadrupole-

based ICP-MS devices (1,4) and rivalled those obtained with ICP-MS instruments based on 

double focussing mass spectrometers (8,9). The background with this ICP-MS device witii 

on-center, cylindrical ion lenses has been typically 1000 counts s'\ With a photon stop, the 

background improved somewhat to ~ 150 counts s '. The offset ion lens and displaced 

detector arrangement described here provided much lower backgrounds than we have 
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obtained on any of our "home-made" device with any of a variety of photon stops or detector 

geometries (5,18,32,33). 

The mass spectrum of Ho^, a monoisotopic rare earth element, is shown in Figure 

13. For this figure, the ion lens voltages were adjusted to maximize transmission specifically 

for Ho"*". The sensitivity (i.e., the count rate per unit concentration) was ~ 10* counts s"' per 

ppb Ho, which would be equivalent to ~ 10' counts s ' per ppm, if the linear dynamic range 

extended to such high count rates. The sensitivity observed for Ho^ compared well with that 

obtained for most other quadrupole-based ICP-MS devices (1), although two mitigating 

factors must be kept in mind: 1) a highly-efficient ultrasonic nebulizer was used in the 

present work, and 2) the kinetic energy of Ho^ (~7 eV) was right in the best range for 

transmission through this lens, as indicated by the trajectory plots in Figure 7. The peak 

shapes were also much better than seen previously with this instrument, perhaps because of 

the RF-only rods on the entrance. Background counts were not shown in Figure 13 because 

few (if any) were seen in the time required (~ 1 min) to measure this spectrum. 

The sensitivities and detection limits obtained with the Channeltron detector are listed 

in Table HI. These data were obtained with two separate schemes for adjusting the voltages 

applied to the lenses. The values labelled "single element conditions" were measured with 

the lens voltages adjusted separately to maximize signal for each group of elements of similar 

m/z. For example, ''Co"*", ^Cu+, and *Zn+ were measured with the same lens settings, 

which differed from those used for ''Mo"^ and '"^Rh"*", or for and Alternatively, 

the values listed under "multielement conditions" were measured with the lens voltages 

adjusted for best transmission of "^Cs^ only. Comparison of the sensitivities in Table in 
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shows that the "multielement conditions" involved little sacrifice in sensitivity compared to 

that obtained under "single element conditions" for the lighter elements such as Co and Cu. 

However, signals for heavier elements such as U were reduced by a factor of about two 

under "multielement conditions." 

In either case, detection limits were in the range 0.3 - 5 ng L"' (pptr) for the elements 

shown. These elements represented favorable cases in that all but Zn were quite efficiently 

ionized in the ICP (1). These values were comparable to those obtained with most 

quadrupole-based instruments, which normally used the standard, less-efficient pneumatic 

nebulizers (1). Apparently, the somewhat-lower sensitivity (accounting for differences in 

nebulization) seen with the present instrument was compensated by the lower background. 

It is interesting that both quadrupole ICP-MS instruments with substantially better detection 

limits and sensitivity (i.e., the Yokogawa PMS 2(X)0 and the TS Sola) also use offset ion 

lenses (10,34,35), but of different geometries than the one described in this paper. 

In a supplementary experiment, the turbo pump on the detector chamber (Figure 1) 

was shut off during sampling of ions from the ICP. The pressure in the detector chamber 

therefore rose gradually from 1.5 x 10"' torr to 3 x lO"' torr. The background and ion signal 

observed were not affected by this increase in pressure in the detector chamber. Thus, the 

fourth pumping stage was not strictly necessary when the Channeltron was used. Three 

differentially-pumped stages would have sufficed, despite the high gas load through the 

enlarged sampler and skimmer. 
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Comparison with Daly Detector 

The Daly detector is shown in Figure 3. The variation of background with target 

voltage for this detector is shown in Figure 14. Background changed little until the target 

voltage was more negative than — 18 kV, after which the background rose sharply. This 

behavior indicated that the pressure in the target chamber (1.5 x 10"' torr) was still a little 

high for the Daly detector, although a much more negative target voltage was possible than 

the -5 kV used in our early experience with this detector at a pressure of ~ 10^ torr (14). 

The target voltage was kept at -18 kV for subsequent studies. 

As shown in Table II, the dark current was ~3 counts s'\ and the background was 

~4 counts s"' with the Daly detector. These values were a bit higher than those seen with 

the Channeltron, and the background exceeded the dark current by about the same factor 

(1.3) as seen with the Channeltron. 

Sensitivities and detection limits obtained with the Daly detector under "multielement 

conditions" are given in Table IV. In general, sensitivity was similar (i.e., within a factor 

of two) for the two detectors. Detection limits were 0.6-20 pptr. These values with the 

Daly detector were a bit poorer than those obtained with the Channeltron but were still quite 

respectable. 

Finally, linearity, stability and precision were evaluated with both detectors. As 

shown in Figure 15, the linear part of the calibration curve obtained with the Daly detector 

extended to somewhat higher count rate (~2 x 10® counts s ') than that obtained with the 

Channeltron, as seen previously (14). A solution of 200 ppb Rh was analyzed repetitively 

to evaluate precision and stability. The relative standard deviation of 5 successive 
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measurements of signal was 0.9% with the Daly detector and 3.0% with the 

Channeltron. The latter figure was representative of the short-term precision obtained in 

many experiments with the Channeltron detector on the instrument described here. Signal 

drift was measured over a longer period (2 hours). The signal observed from either detector 

drifted down over this period, as is common in ICP-MS. With the Daly detector, the 

average signal for '^Rh"^ at 200 ppb drifted down by 3% in two hours. With the 

Channeltron, the signal drifted down by 10% in the same time period. 

These measurements substantiate the following observations concerning stability and 

precision. First, the Daly detector yielded somewhat better stability and precision than the 

Channeltron, as seen previously (14). Second, the difference in drift characteristics seen 

with the two detectors indicated that some of the drift in ICP-MS may have been attributed 

to the Channeltrons that were commonly used. Perhaps there was a change in gain of a 

Channeltron over a time span of a few hours during ICP-MS operation. Finally, the offset 

ion lens was not particularly vulnerable to drift. The drift value reported here for the 

Channeltron (-10% over two hours) was only ~2X worse than the drift typically seen on 

modem commercial ICP-MS devices that use the same detectors. These latter instruments 

have the advantage of being engineered and tested exhaustively to minimize drift, whereas 

no special effort to minimize drift was expended in the present work. The 3% drift value 

obtained with the Daly detector is quite competitive with the drift performance of present 

ICP-MS devices. 
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CONCLUSION 

This paper describes experimental modifications to ICP-MS that provide improved 

tolerance to orifîce plugging and lower continuum background and less background noise 

than that obtained with other quadrupole-based instruments. The ion lens used to reduce the 

background sacrifices analyte count rates somewhat. This lens differs markedly from most 

other lenses used in ICP-MS in that it transmits only those ions that leave the skimmer on 

center. Modest improvements in precision and linear dynamic range are possible with the 

Daly detector, if an additional stage of differential pumping is provided. Spectral 

interferences and matrix effects can also be reduced dramatically with this apparatus, as 

described in the accompanying paper (2). 
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Table I. Instrumental Facilities 

Component 

Ultrasonic Nebulization 

continuous flow 

Model U-5000 

CETAC Technologies, Inc. 

Neslab Instrument, Inc. 

ICP generator 

Type HFP-2500D 

Plasma-Therm Inc. 

(now RF Plasma Products) 

Plasma torch 

All quartz construction 

Ames Laboratory design (15) 

Outer tube extended 25 mm 

beyond aerosol injector 

Load coil 

Operation conditions, materials of 

dimensions 

Solution uptake rate 3.0 mL min ' 

Heater temperature 140 °C 

Condenser temperature 0 °C 

Plasma forward power: 1.30 kW 

Plasma reflected power: < 5 W 

Frequency: 27.12 MHz 

Argon flow rates (L min ') 

Plasma: 17 

Auxiliary: 0 

Aerosol: 1.3 

Three turns 

Grounded to shielding box at 

downstream end with copper strap 
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Ion extraction interface 

Ames Laboratory construction 

Vacuum system (see Figure 1) 

4 stages, differentially pumped 

welded stainless steel construction 

Ames Laboratory 

Pressure measurement 

First stage 

Second stage 

Third and Fourth stages 

Mass analyzer 

Model 270-9 with 012-15 rf head 

Extranuclear Laboratory 

(now Extrel) 

Sampling position 13 mm from load coil, 

on center 

Sampler-skimmer separation: 11 mm 

Operation Pressure (torr) 

Expansion chamber 2.35 

Second stage 5x10^ 

Quadrupole chamber 5x10^ 

Detector chamber 1.5x10 ' 

Convectron thermocouple gauge 

Series 275 digital model 

Granville-Phillips 

Ionization gauges 

Model 843, Varian 

Model 307, Granville-Phillips 

Mean rod bias -1 V dc 
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Rf only quadrupole 

Ames Laboratory construction 

Channeltron electron multiplier 

Model 4830A 

Galileo Electro-Optics Corp. 

Daly detector 

Photo multiplier tube 

Model 9924B EMI 

Counting electronics 

Model 1763 preamplifier 

Model 1762 amplifier-discriminator 

Photochemical Research Associates 

Multichannel Analyzer 

Model 66 with 20 MHz dual-input 

multichannel scanning option 

Nuclear Data Inc. 

Entrance rods: 50.8 mm long 

Exit rods: 38.1 mm long 

Mean rod bias -65 V dc on both entrance 

and exit rods 

Ion deflection plate: +250 V 

Detector housing aperture: -250 V 

CEM bias voltage: -3000 V 

PMT bias voltage: 550 V 

target bias voltage: 18 kV 

output pulse width 30 ns (fwhm) 

Maximum count rate, capability 20 MHz 

pulse width 40 ns 

TTL output 

Dwell time/channel: 50 /iS 

Channels: 4096 



www.manaraa.com

34 

Table n. Continuum background measurements 

Integrated continuum background 

(count s"*)' 

Sampler DC bias Channeltron Daly 

Status on mass filter (V) detector detector 

Closed -1 0.3 3 

Open to ICP -1 0.4 4 

Open to ICP +50 0.4 4 

'Counting time approx. 10 min. while scanning over m/z = 166 to 200. 

Deionized distilled water was nebulized. 
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Table HI. Sensitivitj' and detection limits determined by Channeltron electron multiplier 

sensitivity/ sensitivity,'" detection limits" 

Element counts s"' mg L ' counts s"' mg L"' ngL-' 

5'Co 1380000 1170000 1 

"Cu 1130000 858000 1 

"Zn 390000 302000 5 

89y 2100000 1770000 0.9 

'»Mo 495000 409000 4 

2780000 2540000 0.7 

"'Cs 4070000 4070000 0.5 

'®®Ho 6440000 2770000 0.3 

208pb 2500000 1580000 0.8 

238U 2150000 736000 0.9 

"Single element condition: ion lens voltage adjusted to maximize ion signal separately 

for each group of elements. 

""Multielement conditions: Ion lens voltages adjusted to maximize ion signal for Cs"*" 

only. 
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Table IV. Sensitivity and detection limits determined by Daly detector 

sensitivity,' detection limits 

Element counts s * mg L"' ng L * 

®'Co 1050000 6 

«Cu 467000 10 

"Zn 235000 20 

My 2180000 3 

'®Mo 520000 10 

5440000 1 

"°Ce 3250000 2 

'®®Ho 9550000 0.6 

205'YH 2510000 2 

208pb 1680000 4 

"Ion lens voltages adjusted to maximize ion signal for Ho^ only. 
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N T" 

5.0 cm 

Figure 1. Schematic diagram of MS (ICP not shown): (A) sampler; (B) skimmer; 

(C) port to rotary pump; (D) ion lens (see Figure 2); (F) port to diffusion 

pump (1600L s"'); (G) RF-only quadrupoles; (H) quadrupole mass 

analyzer; (K,Q) ports to turbomolecular pumps (4(X)L s '); (L) ion exit 

lens; (M) Channeltron electron multiplier; (N) deflection plate. 
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Figure 2. Schematic diagram of ion lens system; (A) skimmer (grounded); (B) RF 

only quadrupole at entrance to mass filter; (1) perforated cylinder, first 

electrode of ion lens; (2) copper cone, second electrode of ion lens; (3-6) 

stainless steel plates, third to sixth electrode of ion lens; (7) differential 

pump orifice (DPP); (8) ELFS lens. 
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/ 

i  5 .0 cm 

Figure 3. Schematic diagram of Daly detector and detector chamber: (I) exit FR 

only rods; (L) exit ion lens; (M) polished A1 target; (N) scintillator with 

grounded metal film; (O) photomultiplier tube; (P) port to ion gauge; (Q) 

port to turbo pump. 
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Figure 4. Ion count rates as a function of sampler orifice diameter. The separation 

between sampler and skimmer was optimized separately for each size 

sampling orifice diameter as described in the text. 
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Figure 5. Normalized interface pressure as a function of time for continuous 

nebulization of 1000 ppm Y at sampling orifice diameter of 0.79 mm (•), 

1.09 mm (•) and 1.31 mm (?). 
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Figure 6. Ion count rates as a function of separation between skimmer tip and 

entrance to first ion lens. 
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Figure 7. Trajectories for ions of varying kinetic energies. The skimmer is at the far right, and the differential 

pumping aperture is at the far left. The highest trajectory is from the 4 eV ions, and the lowest trajectory 

is from the 11 eV ions. 
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Figure 8. Maximum Ion kinetic energies as a function of atomic mass. 
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Figure 9. Ion trajectories for 7 eV ion with different exit angles and radial positions leaving the skimmer. In A), the 

exit angles are -6°, -3°, 0°, +3°, +6°, In B), the radial spacing between trajectories is 1.6 mm. Both 

figures show that only the ion that enters precisely on axis (CP) passes through the lens. 
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Figure 10. Normalized ion signals as a function of V3 (see Figure 2) for Li^, Rh^, 

and U"^. 
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Figure 11. Normalized ion signals as a function of V4 for Li^, Rh+, and U"^. 
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Figure 12. Normalized ion signals as a function of Vg for Li^, Rh^, and U"^. 
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Figure 14. Background as a function of target potential with Daly detector. 
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PAPER n. 

INDUCTIVELY COUPLED PLASMA-MASS SPECTROMETRY 

WITH AN ENLARGED SAMPLING ORIFICE AND OFFSET ION LENS 

n. POLYATOMIC ION INTERFERENCES AND MATRIX EFFECTS 
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INTRODUCTION 

Although ICP-MS is a highly successful method for elemental and isotopic analysis, 

some elements still cannot be determined readily in important samples because of 

interferences. For example, polyatomic ions such as ArO^, ArN"*", Ar;"^, ClO^, and ArCl^ 

hamper determination of Fe, Se, V and As. These interfering species can be attenuated 

somewhat by tactics such as mixed gas plasmas (1-5), removal of solvent (1,2,6-11), and 

polishing the inside of the sampling cone (12). A high-resolution MS (13,14) or a collision 

cell (15-17) can also be used for this purpose, with the expense associated with the additional 

hardware necessary. 

ICP-MS also suffers from matrix interferences, in which the matrix concentration 

affects the analyte signal. Generally, the analyte signal is suppressed as the matrix 

concentration increases (6,18-21), although signal enhancements can sometimes be observed 

(22). The extent of the interference depends on the plasma operating conditions and the 

atomic masses of both the matrix and analyte ion. Usually, the interference problem is worst 

for a light analyte ion in the presence of a heavy matrix ion (19). Thus, the most severe 

matrix interference is that of uranium matrix on lithium analyte. Gillson et al. (23) and 

Tanner (24) attribute the matrix interferences mainly to space-charge effects that disperse the 

ion beam and cause loss of ions behind the skimmer and in the ion lens. Presently, this 

space charge effect is the most cogent explanation of the matrix interference problem. 

Reasonable methods of diagnosing and compensating for interferences due to either 

polyatomic ions or matrix effects are available. For example, the interference of'•"Ar^^Cl^ 
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on "As"^ can sometimes be estimated by measuring the abundance of''"Ar^'Cl^ and applying 

the appropriate isotopic correction to the total signal at m/z = 75. Internal standardization 

is employed routinely to correct for matrix interferences; standard additions and isotope 

dilution can also be employed for this purpose (11,25). As a general rule, the compensation 

provided by these methods is more reliable if the extent of the interference is less severe in 

the first place. 

The first paper in this duo described the performance and characterization of a new 

ion lens system for ICP-MS (26). The present paper shows that this same ICP-MS device 

has relatively low levels of many troublesome polyatomic ions. Minor adjustments to the 

lens voltages also reduce the severity of matrix effects substantially. These latter results are 

compared with those of Ross and Hieftje, who found that matrix effects were greatly reduced 

by removing the ion lens between the skimmer and differential pumping orifice (27). 
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EXPERIMENTAL 

ICP-MS Instrumentation 

The ICP-MS device and its performance are described in the companion paper (26). 

Conditions particular to the present paper are noted in Table I. Only the Channeltron 

detector was used. 

As shown in Figure 1, the same physical arrangement of ion lens electrodes was used 

throughout. Three different sets of lens voltages were evaluated. These three configurations 

differed mainly in the voltages applied to the first cylinder (VJ and the second electrode of 

ion lens, the copper cone (V2). The lens voltages for each lens configuration (Figure A, B, 

or C) are listed in Table 2. Lens A (A, Figure 1) was used throughout the companion paper 

and for the studies of background spectra in the present paper. The first cylinder was 

biassed at +3 V and the voltages applied to the other electrodes were adjusted to maximize 

signal. For lens B (B, Figure 1), the first cylinder was grounded and the other voltages 

were re-adjusted to maximize signal again. The optimum voltages for lens B were only 

slightly different from those for lens A. Finally, for lens C (C, Figure 1), both the first 

cylinder and the cone were grounded. Many of the other lenses then required substantial 

adjustments to the applied voltages to re-maximize the ion signal. 

After the optimum lens voltages were found in this manner for each configuration, 

the aerosol gas flow rate was re-adjusted to maximize Y+ signal. As shown in Table I, each 

of the three lens configurations required slightly different aerosol gas flow rates. With the 

load coil geometry used with this device, the plasma potential and ion kinetic energy varied 
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somewhat with aerosol gas flow rate, which probably caused the interdependence of aerosol 

gas flow rate and lens voltages. 

Solutions. Solvents and Standards 

Standards were prepared by diluting aliquots of commercial stock solutions (1000 

ppm. Fisher) with distilled, deionized water (18 MQ, Bamstead). In matrix effect studies, 

the analyte concentration was deliberately kept rather high (1 ppm) to minimize possible 

contamination from impurities in the matrix elements. Blank solutions containing the matrix 

without analyte were analyzed; contamination was negligible. The 1 % HNO3 and 1 % HCl 

were prepared by diluting ultra pure acids (Ultrex U, reagent grade, J. T. Baker) in distilled, 

deionized water. The lead matrix was so-called "common lead," i.e., the isotope ratios were 

207pb/206pb 208py/206py _2/l. 

Matrix Effect Studies 

The analyte elements (Co, Y and Cs) and the matrix elements (Sr, Tm and Pb) were 

chosen because they are efficiently ionized in the plasma and they have significantly different 

atomic masses. The mass analyzer was scanned repetitively in multichannel mode through 

a mass window 30 m/z units wide spanning each analyte peak. Thus, a separate set of scans 

was obtained for each analyte in each matrix. The solutions were analyzed in the following 

order; analyte only, analyte 4- matrix, analyte only. The third step (i.e., re-analysis of the 

solution containing only analyte) was continued until the analyte signal recovered to its 

original value, which took approximately two minutes. The process was repeated 6-8 times 
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successively for each analyte in each matrix; the average matrix effects are reported below. 

The mass analyzer was then adjusted to the appropriate m/z window for the next analyte, and 

the process was repeated. 

In this fashion, matrix effects were measured for each analyte in each matrix under 

each lens configuration (see Figure 1 and Table H). All the results reported subsequently 

in Figures 9-11 were obtained successively on one day without turning the plasma off. The 

entire sequence of matrix effect experiments was repeated on three separate days, with 

consistent results. 
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RESULTS AND DISCUSSION 

Polyatomic Ions from Deionized Water and HNO, Solutions 

Background spectra from m/z = 42 to 85 are shown for deionized water and 1 % 

HNO3 in Figures 2 and 3. The lower frame in each figure is merely plotted with a more 

sensitive vertical scale so that weak peaks are evident. The weaker peaks appear noisy in 

the expanded frames because only a few counts are recorded in each channel for many of 

them. 

Inspection of Figures 2 and 3 shows that the usual polyatomic ions are not very 

intense with this ICP-MS instrument. The worst one is ""Arg"^ at m/z = 80, and it is only 

~ 5000 counts s'\ The minor isotope peaks of Ar;^ are not clearly distinguishable. Peaks 

at m/z = 44 (probably CO^^) and m/z = 84 (probably ^Kr^) are next in abundance to Arz"^. 

From deionized water '"'Ar'^0^ is only —200 counts s"'. The 1 % HNO3 is a bit impure, as 

peaks from ClO^ (m/z = 51 and 53), ^^Mn"^, Cu^ (m/z = 63 and 65), and perhaps '^As"^ 

and/or ""Ar^^CI"^ are seen. For either solvent, the absolute levels of these polyatomic ions 

are far below those usually seen on most other ICP-MS devices. For reference, the spectrum 

of Fe at 0.5 ppm is shown in Figure 4. Compared to the blank spectrum (Figure 3), both 

^Fe"^ and ^^Fe^ are easily seen at this level. 

Polyatomic Ions from HCl and NaCl Solutions 

Chlorine in any form in the sample generally leads to the troublesome polyatomic 

ions ClO^ and ArCl"*". Background spectra from 1% HCl and 0.25% NaCl (the equivalent 
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of 0.1 % Na) are shown in Figures 5 and 6. Note that these samples are being introduced 

with an ultrasonic nebulizer, and the desolvation system does not remove either HCl or 

NaCl. ArCl^ is barely observable from either solution, and is only 200 - 400 

counts s \ The Cu^ observed from both solutions could be from Cu impurity or possibly 

from Cu^ ablated from the conical ion lens, which is made from copper. In the spectrum 

from 0.25% NaCl, the ratio of the peak at m/z = 63 to that at m/z = 65 is too high for 

Cu+, so there is probably some ArNa"*" present at ~ 100 counts s"'. A curious peak at m/z 

= 62 is attributed tentatively to NazO^, the sodium analog of water. 

Spectra of As at 0.5 ppm in 1% HCl (Figure 7) and Cu and Co at 1 ppm in 0.25% 

NaCl are provided in Figures 7 and 8. In Figure 7B, '"'Ar^'Cl'*' is not distinguishable from 

background, even though 1 % HCl is being introduced with an ultrasonic nebulizer. Some 

"•"Ar^'Cl"^ (~ 150 counts s"') is probably evident in Figure 8B. Again, these common 

polyatomic ions containing chlorine are observed only at quite low levels with this device. 

Comparison of Polyatomic Ion Levels to Usual Values 

A rigorous comparison of the levels of polyatomic ions seen in Figures 2 - 8 to those 

seen in other quadrupole ICP-MS devices is difficult for several reasons. First, many of the 

weak peaks shown in Figures 2 - 8 are probably at least partly due to metal impurities in the 

solvents rather than polyatomic ions. Second, polyatomic ion levels with any ICP-MS 

instrument are highly sensitive to operating conditions and the methods used for nebulization 

and solvent removal. 

For these reasons, the following discussion compares polyatomic ion levels obtained 
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recently in two papers that used an ultrasonic nebulizer with conventional desolvation, i.e., 

heating at ~ 140 °C followed by condensation at —0 °C. This nebulizer and desolvator are 

the same as those used in the present work. In one paper, Xe is added to attenuate 

polyatomic ions (5). In the other paper, cryogenic desolvation is employed for the same 

purpose (9). In either case, the count rates and background-equivalent-concentrations (BECs) 

cited in Tables HI and IV relate to the "control" values, i.e., those measured from a 

"normal" ICP without these additional ways to attenuate polyatomic ions. The BEC is the 

solution concentration of analyte that yields a net signal for of the same magnitude as 

that for the interfering polyatomic ion. A Sciex ELAN Model 250 with upgraded ion optics 

is used for the comparative data derived from refs. (5) and (9). In general, the ICP 

operating conditions are selected to yield maximum M"*" signal in each case. 

The count rates observed for four of the most troublesome polyatomic ions (ArN^, 

ArO^, ClO^ and ArCl^) are compared to those seen from our Sciex ELAN instrument in 

Table 3. For the present work, the total count rates at m/z = 54, 56, 51 and 75 are 

reported and are assumed to be solely due to the polyatomic ions. Table EI shows that the 

levels of polyatomic ions seen in the present work are indeed much lower than those seen 

when a comparable nebulizer and desolvator are used on our Sciex ELAN instrument. 

EEC values for the two instruments are given in Table IV. The BEC values are 

particularly useful for comparison because they account for both the background and the 

analyte signals. In general, the BEC values seen in the present work are superior to those 

from ref. (5). However, the measurements in ref. (5) were performed with a home-made 

ultrasonic nebulizer (28), which was similar in principle but did not yield as intense an 
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aerosol as the commercial nebulizer used in the present work and in ref. (9). The BEC 

values from the present work are comparable to or perhaps somewhat worse than those from 

ref. (9). Although the absolute levels of polyatomic ions are quite low for the instrument 

described in the present work and the companion paper (26), the count rates for analyte ions 

are also lower than would usually be expected when an ultrasonic nebulizer is employed. 

The BEC values reported for ref. (9) in the far right column of Table IV are among the best 

values obtained with commercial instruments. The higher values from ref. (5) are more 

typical. 

A detailed comparison of the BEC values in Table IV with those obtained on 

commercial instruments with the usual pneumatic nebulizers is even more questionable, so 

only some typical examples are cited. Recent desolvation studies by Lam and McLaren (1), 

Tsukahara and Kubota (10), and Jakubowski et al. (7,8) report BEC values for ^^Fe"^ of 74 -

190 ppb with a spray chamber at 0 - 30 C. These BECs improve to 14 - 55 ppb with a 

desolvation system like that used in the present work. Evans and Ebdon report data that 

correspond to a BEC of 140 ppb As in 1 % HCl with a spray chamber cooled to 5 °C and 

no additional substances (e.g., Ng, O2 or organic solvent) added to the plasma (29). Jarvis 

et al, (11) list BECs for a VG PQ2 with a cooled spray chamber. These values are cited for 

Co and are corrected below for isotopic abundance for Fe and for the ionization efficiency 

of As (estimated to be 30% (11)). With these corrections, the values of Jarvis et al. 

correspond to BECs of 200 ppb Fe at m/z = 54 and 90 ppb Fe at m/z = 56 in 1 % HNO^. 

In 1% HCl, BEC values of 230 ppb V and 120 ppb As are estimated (11). 

Either of these values with pneumatic nebulizers are substantially poorer than our 
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BECs from Table IV. At any rate, the instrument described in the present work yields very 

low levels of polyatomic ions and BECs that are at least as good as the best values produced 

by typical commercial instruments based on quadrupoles. Newfangled tricks like adding Nj 

or Xe (1,3-5,29) or cryogenic desolvation (2,9) could attenuate some of the interfering ions 

to still lower levels, if indeed they are due to polyatomic ions and are not simply metal 

impurities from the solvents. As described in the companion paper (26), the background at 

higher m/z values (i.e., above — m/z = 80) is also very low (~ 0.4 counts s'*) for the 

device described in the present work. 

Metal Oxide Ions 

Under the conditions that yield maximum M"^ signal, refractory metal oxide ions are 

fairly abundant, i.e., the count rate for M0+ is 10% of that for for M = La and U. 

Moving the sampling position slightly downstream to 15 mm and decreasing the aerosol gas 

flow rate from 1.30 L min ' to 1.1 L min * reduces the MO'^/M'^ ratios substantially to the 

values shown in Table V. This adjustment of operating conditions induces only a minor 

sacrifice of 10% to 20% loss of M"^ signal. The values of 0.5% for MoO^/Mo^ and ~ 1 % 

for LaO^/La^ and UO^/U"^ are quite typical of ICP-MS devices with this type of desolvation 

(i.e., heating at 140 °C followed by cooling at -0 °C) (1,7,9,10). 

The general observation that weakly-bound polyatomic ions like ArCl^ and ArO^ are 

at quite low levels while refractory oxide ions like LaO^ and UO^ are at usual levels is 

interesting. Hieftje (30) has suggested that the high degree of spatial selectivity of the lens 

discriminates against ArO^, ArCl"^, etc. If these weakly-bound ions are not present in the 
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plasma but are created by reactions during the extraction process in the boundary layer inside 

the edge of the sampler or skimmer, they would not be particularly abundant along the 

central axis of the beam leaving the skimmer. In contrast, many other ICP-MS devices 

block photons with a solid baffle along the center line. Such lenses accq)t only ions that 

leave the skimmer off-center (31). Perhaps the off-center section of the beam is enriched 

in polyatomic ions made in the boundary layer; these weakly-bound polyatomic ions are 

therefore more abundant in spectra from these devices. 

Vaughan and Horlick conclude that metal oxide ions are made largely during the 

extraction process, but their study merely proves that extra metal oxide ions can be seen if 

the sampling orifice is too small (32). The author's view is that refractory metal oxide ions 

like LaO^ and UO^, which have dissociation energies of 8 to 9 eV, are not completely 

dissociated in the plasma (33-35). These ions pass through the sampler and skimmer just 

like the atomic analyte ions and are not rejected preferentially by the lens. Hence, the 

spatial selectivity of the offset ion lens does not discriminate against MO^, and the levels of 

MO+ seen in the present work are typical of those seen on most ICP-MS devices. 

Matrix Interferences 

These experiments are performed under conditions that yield maximum Y"*" signal for 

each lens configuration. The sampling position is 11 mm. Each lens requires a slightly 

different value of aerosol gas flow rate, as shown in Table 1. The measured interference 

effects are plotted for each analyte and matrix for the three lens configurations (A, B, and 

C, Figure 1) in Figures 9-11. Again, a highly-efficient ultrasonic nebulizer is used. The 
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high rate of introduction of matrix with this nebulizer would be expected to induce 

substantial matrix effects (36). In each case, the analyte signal is suppressed severely with 

lenses A and C, whereas little or no suppression is seen with lens B. For example, Sr and 

Tm at 10 mM do not cause measurable interference on any of the three analytes with lens 

B. Lead at 10 mM suppresses Co^ and Y+ signal by only 20% (Figures 9 and 10) and 

causes little interference on the heavier Cs^ (Figure 11). 

Sensitivities and detection limits with the three lenses are given in Table VI. Lens 

A yields the best sensitivity but is highly vulnerable to matrix effects. Grounding the first 

cylinder (lens B) involves only a modest sacrifice in sensitivity and detection limits, and 

matrix effects are minimal. The basic reasons why lenses A and B should result in 

substantially different matrix effects are not clear at this time. The two configurations differ 

mainly by only +3 V on the first cylinder (V,, Figure 1), with only minor differences in the 

voltages applied to the other electrodes. The extent of matrix effects does not simply 

increase with the total transmission, because the transmissions of lenses A and B are not that 

different, and lens C has both poor transmission (i.e., poor sensitivity in Table VI) and bad 

matrix effects. 

The matrix concentrations (10 mM) in the present work are the same as those used 

by Ross and Hief^e, who introduced samples with a conventional pneumatic nebulizer (27). 

The small matrix effects observed with lens B are considered comparable to their results with 

no lens in the second stage, when the differences in rate of transport of matrix from the two 

nebulizers are considered. The measures taken to reduce matrix effects (i.e., grounding the 

first lens, rather than removing all the lenses) are quite different in our study. 
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Effect of Matrix on Lens Voltages 

At times, we have observed that introduction of a matrix element can affect the 

apparent voltage applied to the first lens (37). A similar phenomenon is seen in the present 

work with lens A. During nebulization of a blank solution, V, is set to +3 V and the other 

lenses are adjusted to maximize signal. When a matrix solution is added, the apparent 

voltage on lens 1 decreases, as shown in Table VII. If the matrix effect is measured without 

changing the power supply setting that feeds lens 1, analyte signals are suppressed 

substantially (Figure 12). If the voltage output of the power supply is re-adjusted to read +3 

V with the matrix present, the effect of matrix on analyte signal is not severe, as also shown 

in Figure 12. The matrix effects on Co^ and Y+ signal can also be alleviated in much the 

same way. The deviation of apparent voltage on lens 1 is greatest for the heavier matrix 

element (Pb in Table VII), which again agrees roughly with our previous observations (37). 

This procedure could prove useful in that it allows use of the more sensitive lens A 

configuration with minimal matrix effects. Caruso and co-workers have reported at length 

on a successful tactic for mitigating matrix effects, which they call matrix tuning. The ion 

lens voltages are adjusted to maximize analyte signal with the matrix actually present. This 

adjustment of lens voltages is sometimes done during nebulization of the actual sample of 

interest, rather than a standard (38,39). This procedure differs in detail from our method 

of resetting lens 1 to its original voltage with the matrix present. Nevertheless, both 

approaches mitigate matrix effects significantly, perhaps for similar basic reasons. All these 

instrumental modifications for attenuating matrix effects require much more fundamental and 

applied study before they are understood properly. 
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CONCLUSION 

This paper and its companion (26) describe a quadnipole ICP-MS device with the 

following attributes: low levels of polyatomic ions, minimal matrix interferences, low 

background, and high tolerance to plugging from deposited solids. The analyte sensitivity 

is ~ lOX lower than that expected from a commercial instrument with an ultrasonic 

nebulizer. Experiments to test these performance figures for the analysis of difficult 

samples with this ICP-MS device are under way in our laboratory. 
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Table I. Operating conditions (see also ref (26)) 

ICP Conditions 

Forward power 

Aerosol gas flow rate' 

Sampling position 

1.4 kW 

lens A''1.30 L min"' 

lens B''1.25 L min ' 

lens C''1.20 L min ' 

13 mm from downstream end of load coil, 

on center 

MS Condition 

Mean DC bias: 

on mass analyzer -1.0 V 

on RF only rods -65 V 

Bias voltages on Channeltron 

sensitivity measurements -3000 V 

matrix effect measurements -2700 V 

'These represent the aerosol gas flow rates that yield max. V" signal. 

•"See Figure 1 for diagrams of lenses. 
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Background spectra 

(Figs. 2-8) 

Matrix effect studies 

Matrix effect studies 

Sensitivity meas. 

Metal oxide meas. 

Data Acquisition 

Multichannel scanning (11) 

1(XX) sweeps 

4096 channels from m/z = 42 to 85 

Dwell time 50 /us per channel 

See text 

Solutions 

1 ppm each analyte 

One matrix element per solution 

at 10 mM 

0.5 ppm Co, Y 

0.2 ppm Cs 

1 ppm Mo 

0.2 ppm La 

0.5 ppm U 
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Table H. Ion lens potentials for the various lens system* 

System*" V, Vz V3 

Ion Lens Potential (V) 

V4 V5 V6 V7 Vs 

A 4-3 -240 -55 +2.0 -200 + 14 -240 -200 

B ground -240 -61 +3.0 -200 + 13 -240 -210 

C ground ground -20 +28 -225 +28 -230 -230 

"Each ion lens voltage was optimized for obtaining maximum signals. 

•"Ion lens systems A, B, and C are shown in Figure 1. 
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Table ID. Comparison of count rates for polyatomic ions to other ICP-MS work with 

ultrasonic nebulization and conventional desolvation' 

Count rates (counts s"') 

Interférant Solution present work Ref. (5) Ref. (9) 

'^Ar"*N+ DDW 60 14,100 1,000 

'"Ar^^O+ DDW 200 72,800 12,000 

35C1160+ 1% HCl 400 24,000 50,000 

""Ar^'cr 1% HCl 150 890 1,200 

'Aqueous samples, heater temp. ~ 140 °C, condenser temp. ~0 °C. 



www.manaraa.com

75 

Table rV. Comparison of BECs to those obtained in other ICP-MS work with ultrasonic 

nebulization with conventional desolvation* 

BEC (ppb) 

Analyte Interférant Present work Ref. (5) Ref. (9) 

54Fe+ 40Ar»4N+ 4 100 0.8 

56Fe+ 40Ari6o+ 0.7 35 0.7 

51y+ 35cil6o+b 1.8 15 4 

7^As+ '^Ar^^Cr'' 1.8 1.4 0.3 

"Aqueous samples, heater temp. ~ 140 °C, condenser temp. ~0 °C. 

''Analyte and interférant measured during nebulization of 1 % HCl. 



www.manaraa.com

76 

Table V. Sensitivity and MO^/M^ ratios for elements that form refractory oxides 

sensitivity, Signal ratio 

Element counts s"' mg L"* % 

"^Mo+ 180000 0.5 

3450000 1.0 

%:U+ 1230000 1.2 
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Table VI. Analyte sensitivities and detection limits measured with the various lens 

systems* 

Sensitivities (counts mg L ') Detection limit (ng L ') 

System** Co Y Cs Co Y Cs 

A 1200000 1900000 3600000 2 1 0.5 

B 1000000 1200000 2500000 2 2 0.8 

C 180000 480000 1000000 10 4 2 

'Each system was optimized for maximum Y^ signal using the conditions listed in Table 

I and Table II. 

"•Ion lens systems A, B, and C are shown in Figure 1. 
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Table VII. Influence of matrix element on apparent voltage applied to lens 1 

Apparent voltage on 

Matrix lens 1* (V) 

None +3.0 

Sr^ +2.5 

Tm +2.0 

Pb + 1.0 

'Measured from output meter on power supply to lens 1. 

•"Matrix elements present at 10 mM. 
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3 

A 

Figure 1. Ion lens configurations. The skimmer is at the far right, and the entrance 

RF-only rods are at the far left. 1: perforated cylindrical electrode, 2: 

conical electrode, 3-6: electrodes with circular apertures, 7: differential 

pumping aperture, 8: ELFS entrance to RF-only rods. (A) all ion lens 

biased; (B) first electrode of ion lens grounded; (C) first and second 

electrodes of ion lens grounded. 
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B 

Figure 1. (continued) 



www.manaraa.com

81 
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Figure 1. (continued) 
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Figure 2. Background spectra obtained during nebulization of deionized distilled 

water for m/z = 42 to 85. The A is the raw spectrum, and the B is scale 

expanded 10 times. 
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Figure 4. Mass spectrum from 0.5 ppm Fe in 1 % HNO3. 
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Figure 6. Background spectrum from 0.25 % NaCl (0,1 % Na) in 0.1 % HNOj. 
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Figure 11. Normalized Cs+ signal for 1 ppm Cs in the presence of Sr, Tm or Pb, 

each at 10 mM. (A): lens A; (•); lens B; (•): lens C. 
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INTRODUCTION 

Although inductively coupled plasma mass spectrometry (ICP-MS) has very low 

detection limits for most elements (1 - 50 ng L'*), it still suffers ion loss from inefficient 

collection and transmission of ions. The sensitivity of current commercial ICP-MS systems 

is ca. 1x10® - 1x10* counts s"' ppm '. For an element of mass 100 this corresponds to the 

introduction of 10* - 10® atoms of an element to the plasma to detect one ion. This low 

efficiency derives largely from the relatively poor transmission of the ion optics due to 

severe space charge effects and partially from the limited transmission of the skimmer and 

mass filter. Space charge problems are also believed to cause matrix interference effects. 

It has generally reported that heavy analyte ions are suppressed less severely than light ones 

and heavy matrix ions suppress analyte signals more extensively than light matrix ions (1-5), 

The space charge limit (I^ in ^A) for an ion current focused through a cylinder of 

diameter D (cm) and length L (cm) is given by 

Ux = 0.9(m/z)"2V''2(D/L)2 1 

where m/z is the mass to charge ratio of the ion C^C = 12) and V is the ion energy (eV) (6). 

This equation suggests that accelerating the ions to higher energies would improve ion 

transmission and attenuate mass discrimination by overcoming the space charge problem. 

Conventionally, the metal interface cones through which the ions are extracted are connected 

to ground potential. Electrically floating one or both of these cones at various potentials 

could accelerate the ions and, therefore, improve the ion transmission. Bradshaw et al (7) 

and Morita et al (8) applied the same high voltage, about 4-5 kV, to both the sampling and 
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skimmer cones. A magnetic sector mass analyzer was used and high resolution was 

achieved, so that polyatomic ions might be separated from analyte ions. Sensitivity was also 

improved with these instruments (9). Turner accelerated ions to high kinetic energy behind 

the skimmer by using another metal cone at -2 kV (10). He reported that sensitivities of low 

mass ions increased compared with other ICP-MS instruments; most elements with different 

masses had comparable molar sensitivities. Turner also stated that matrix effects were 

minimized with this interface arrangement. Douglas applied a RF voltage on the sampling 

and skimmer plates (11). Arcing at the sampler orifice can be eliminated by grounding the 

sampler and applying an RF bias to the skimmer orifice. It was also found that the signal 

to noise ratio was improved by a factor of approximately 2 by correct RF biasing of the 

skimmer plate (11). 

In the present work, modest DC voltages (10 - 50 V) are applied to the sampler or 

skimmer cones. Ion transmission and calibration linearity are improved, and mass 

discrimination is greatly reduced by these arrangements. In another experiment, the injection 

tube of the torch is made of metal instead of the usual quartz. Ion transmission is also 

improved substantially when a negative voltage is applied to tiie injector tube. 
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EXPERIMENTAL 

ICP-MS Apparatus 

A schematic diagram of the ICP-MS instrument used in this work is shown in Figure 

1. This instrument and some components have been described in detail elsewhere (12-15). 

The operating conditions are identified in Table I. Sample solutions were nebulized with a 

continuous flow ultrasonic nebulizer (16,17). The solutions were delivered with a peristaltic 

pump (Gilson Model Minipuls 2) at a rate of 1.5 ml min"'. The aerosol was desolvated in 

a pyrex heating tube at 140 °C followed by a condenser at 0 °C. RF-only quadrupoles were 

not used. Ions were detected with a Channeltron electron multiplier (Model 4830A Galileo 

Electro-Optics Corp.). 

Interface 

A typical ICP-MS sampling interface is shown in Figure 2. The sampling cone was 

made from nickel. The orifice was enlarged to 1.31 mm diameter from the usual 1.0 mm. 

The diameter of the skimmer orifice was also 1.31 mm. The angles and other dimensions 

of the sampler and skimmer were described elsewhere (12). The distance between the 

sampler orifice and skimmer orifice was 11 mm. At this position, the skimmer tip was 2/3 

of the way from the sampling orifice to the onset of the Mach disk, which yielded optimum 

sensitivity, as seen previously by Douglas and French (18). 

Three specific arrangements for floating parts of the interface have been studied. In 

Figure 3A, the same DC bias voltage was applied to both the sampler and skimmer (sampler 
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& skimmer biased together). This arrangement was the same as that described in ref. 7 and 

ref. 8. Figure 3B shows a second arrangement (sampler floating & skimmer biased) in 

which the sampler was allowed to float, i.e. the sampler was not connected to ground or to 

any voltage source, and a DC bias voltage was applied to the skimmer. In a practical ICP-

MS apparatus, the sampler is usually cooled by water supplied through water cooling lines, 

and the sampler is thus connected to ground through the water cooling lines, which have an 

electrical resistance of — 20 MO. Because of the relatively high resistance, for all practical 

purposes the sampler was not connected to ground, and therefore floats. 

Figure 3C shows a third floating arrangement of sampling interface (sampler 

grounded & skimmer biased) in which the sampler is grounded and the DC bias voltage was 

applied only to the skimmer. The skimmer was bolted to the main vacuum chamber by 

Nylon bolts and was insulated at its base with a teflon spacer. The sampler flange was 

bolted to the expansion chamber in the same way. The sampler and skimmer were insulated 

from each other except that both shared the same cooling water line (20 M Q resistance to 

ground). Cooling water was circulated through the skimmer to keep it from melting. 

There were two ways to ground both sampler and skimmer flanges. The sampler and 

skimmer could be bolted directly to vacuum system with stainless steel bolts, which was not 

convenient for switching from a grounding pattern to one of the floating patterns. 

Alternatively, the sampler and skimmer flanges were grounded to the vacuum chamber with 

copper wires (5 - 10 cm long) at four opposite positions. 

When a DC voltage was applied to the plasma torch injector, a stainless steel injector 

tube was used, instead of the usual glass tube. A schematic diagram of this special torch is 
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shown in Figure 4. The outside and inside diameters of the injector tube were 3.2 mm and 

2.0 mm, respectively. 

Ion Lens 

The ion lens used on this ICP-MS instrument was slightly different from that used 

on the instrument described in ref. 13. This modified ion lens is shown in Figure 5. Ions 

passing the skimmer (A, Figure 5) entered the first stainless steel cylinder (1, Figure 5). 

Numerous holes were drilled in the side wall of the cylinder, so that neutral atoms could be 

evacuated. The second and the third electrodes (2 and 3, Figure 5) of the lens were stainless 

steel cylinders also, but the inside diameter of the second electrode was 2.5 cm, twice that 

of the third electrode. A small conical photon stop (7, Figure 5) was placed on center after 

the second cylinder. The fourth electrode of the ion lens (4, Figure 5) was tapered, the 

entrance was 12.7 mm diameter and the exit was 6.4 mm diameter. Finally, ions passed 

through the differential pumping orifice (5, Figure 5) which was a tube 2.50 mm diam. x 

6.4 mm long. The voltages applied to each electrode are identified in Table 1. Ions were 

transmitted better through this modified ion lens than our previous ion lens (12-14), which 

was shown by better analyte sensitivity for analytical purposes and better ion beam intensity 

for ion deposition. 

Data Acquisition 

Detection limits were measured by the procedure described in ref. 13. The detection 

limits represented the solution concentration necessary to yield a net peak height equivalent 
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to 3 times the standard deviation of the background. Signals were measured in the 

multichannel scanning mode (19). The dwell time was 50 fis address ' for 4096 addresses 

over a mass window 20 m/z units wide. Fifty such sweq)s were averaged. The mass 

analyzer was operated at unit mass resolution. Sensitivity, detection limits, and mass 

discrimination were measured by pulse counting. A preamplifier (Model 1763) and a 

amplifier-discriminator (Model 1762) (Photochemical Research Associates) were used for ion 

counting. 

At higher ion signal levels, ion current was measured for determination of calibration 

curves. The analog output of the electron multiplier was fed to a current-to-frequency 

converter (Model 151, Analog Technologies Inc.). The TIL pulses from the converter were 

carried to the input of a multichanner analyzer. The number of pulses in the train were 

counted by the analyzer with a dwell time of 50 jus. In order to compare dynamic linear 

ranges fairly, the ion current from 20 ppm Co for each system was adjusted to nearly equal 

sensitivity by adjusting the detector bias voltage. 

Voltages on the sampler and skimmer were measured with a voltmeter (Model ME-

550 Digital Multimeter, SOAR Corporation, Japan). Ion kinetic energies were measured by 

applying a positive stopping voltage as the mean DC bias to the quadrupole mass filter (20-

22), The stopping voltage necessary to attenuate the ion signal to 5% of the original signal 

level was measured and is referred to as "maximum ion energy" subsequently. 

Unfortunately, the highest DC bias voltage for the quadrupole mass filter was only 15 volts. 

Ion kinetic energies above 15 eV could not be measured with this ICP-MS instrument. 
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Standards and Solutions 

Standard solutions were 0.1 mg L ' of each element unless noted otherwise and were 

prepared by diluting aliquots of commercial stock solutions (Fisher) with distilled deionized 

water (18 MO, Bamstead), 
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RESULTS AND DISCUSSION 

Sensitivity and Detection Limit 

Relative Co"*" sensitivities (assuming ion signal was unity when sampler and skimmer 

were grounded by copper wires) as a function of the floating potentials are shown in Figure 

6. As shown in curve 6A, Co^ sensitivity was improved modestly by applying the same DC 

voltages (10-20 V) to both sampler and skimmer. The sensitivities were improved by a 

factor of 6 by floating the sampler and applying a DC voltage of 30 - 40 V to the skimmer 

(curve 6B), The signals were improved by factor of 5 by grounding the sampler and 

applying DC voltages (above 20 V) to the skimmer (curve 6C). It is interesting that the ion 

signals increased two to three times at 0 volts witii all these three interface arrangements 

compared with the signals obtained when both sampler and skimmer were grounded. 

The data in Table II were collected under the optimal operation conditions for each 

interface arrangement. Actually, the ion lens settings, plasma power, and aerosol gas flow 

rates that yielded maximum Co^ signal were comparable to each other for all arrangements, 

which can be seen in Table I. Higher positive voltages (up to 100 V) could be applied to 

the interface if the ion lens voltages were adjusted to re-optimize ion transmission. 

However, the Co ion sensitivities shown in Figure 4 and Table II were the best sensitivities 

we could get. For either floating interface, sensitivities were in the range 4.0x10® — 

6.0x10® counts s"' ppm"' and detection limits were in the range 10 - 20 ng L* (pptr). Both 

sensitivity and detection limit of Co^ were improved by a factor of 4 to 6 with either floating 

interface arrangement. The best arrangement was perhaps the one with the floating sampler 
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and biased skimmer, which improved ion signal by a factor of 6. The interface arrangement 

did not affect the background, which was ISO ± 20 counts sr' in all cases. 

Linear Dynamic Ranee 

Figure 7 shows that the linear dynamic range for Co^ was improved when the 

sampler was floated and the skimmer was biased (Figure 3B) compared to the performance 

of a conventional grounded interface (Figure 2). It is noted that the relative signal for Co'*' 

with the grounded interface was much smaller and rolled over at a solution concentration of 

80 ppm. The Y-intercept of this curve did not pass through zero, as the curve probably has 

already rolled over at 20 ppm. The curve obtained with the sampler floating and skimmer 

biassed (Figure 3B) by 30 V was linear to at least 100 ppm. Similar improvements in linear 

dynamic range were obtained with the interfaces shown in Figure 3A and 3C (sampler & 

skimmer biased together and sampler grounded & skimmer biased) as well. Figure 7 also 

shows that the linear dynamic range was extended when the floating voltage was raised from 

10 V to 30 V. The sensitivity for Co^ with the floating potential of 10 volts with floating 

interface B (sampler floating & skimmer biased) was only linear to about 60 ppm, while the 

curve obtained with the bias potential of 30 volts was linear to at least 100 ppm (see Figure 

7). Similar observations could be seen with the interface shown in Figure 2A (sampler & 

skimmer biased together). However, the linear dynamic range obtained with the sampler 

grounded and skimmer biased (Figure 3C) was not influenced by the voltage applied to the 

skimmer if the voltage was above 20 volts. The curves with this bias system were linear to 

at least 100 ppm if the bias voltages were above 20 volts. 



www.manaraa.com

109 

Mass Discrimination 

Mass discrimination is a common problem for multielement determinations in ICP-

MS. This discrimination can be shown by expressing ion sensitivity in terms of atomic 

concentrations rather than weight concentrations. The signals, i.e., sensitivities of Co^, 

Rh"*", and Ho^ in terms of atomic concentrations, are shown in Table HI. These three 

analyte elements were chosen because they are efficiently ionized in the plasma, they are all 

monoisotopic, and they have significantly different atomic masses. The sensitivity of a 

heavy element (Ho) was about 4 times higher than that for a light element (Co) when both 

sampler and skimmer were grounded. This 4x difference in sensitivity is quite common in 

many ICP-MS instruments. Mass discrimination was greatly reduced in this instrument with 

the sampler floating and skimmer biased by 30 V, as shown by the similar sensitivities for 

^'Co"^, and '^%o^ in the last line of Table HI. This result shows that the signal for 

any element might reflect the behavior of all the others, so that a single element can serve 

as an internal standard for all the others. This will make internal standardization and 

calibration for multielement semi-quantitative analysis much easier. Similar reductions in 

mass discrimination also were seen in other floating interface arrangements. 

Ion Energy 

Ion energies of Co, Rh, and Ho increased as the interface was floated. The influence 

of voltage applied to both sampler and skimmer together on Co ion energy is shown in Table 

IV. It is shown that the ion kinetic energy increased with floating potential. It is interesting 

that the ion energy with interface grounded directly to the vacuum chamber was different 
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from that grounded through the power supply (0 V). Perhaps this was a reason that ion 

sensitivities increased when the interface was grounded through the power supply (0 V 

points, Figure 6). This also shows that the ion kinetic energy, and perhaps the plasma 

potential, is affected by different ground configurations. 

Measured Potential on Sampler and Skimmer 

In these experiments, voltages were applied to the interface from an adjustable DC 

power supply. The actual potentials on the sampler and skimmer were measured by a 

voltmeter. Figure 8 shows that the potentials measured on the sampler were the same as the 

voltages applied when the sampler and skimmer were biased together (A, Figure 8), and 

were about 6 volts less positive than the applied voltage when the sampler was floated and 

the skimmer was biased (B, Figure 8). Figure 9 shows that the potentials measured on the 

skimmer were the same as the applied voltages except at zero voltage with either sampler 

and skimmer biased together or sampler floating and skimmer biased. The measured 

potentials on the sampler was always zero (C, Figure 8) and was about +10 V on the 

skimmer (C, Figure 9) when the sampler was grounded and skimmer was biased regardless 

of the voltage applied to the skimmer. Perhaps this was why the ion signal change with this 

arrangement was different from the others (C, Figure 6). The signal did not change with 

applied voltages above ~ +20 V (Figure 6) with this interface arrangement. 

It is noted in Figure 8 that the measured potentials were not zero when the applied 

voltages were zero on the sampler in arrangement A (sampler & skimmer biased together) 

and arrangement B (sampler floating & skimmer biased). One possible reason was that the 
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sampler potential was affected by the plasma when the sampler was not grounded. When 

the applied voltages were higher than the potentials induced by the plasma, the sampler 

voltage would be controlled by applied voltages. This was also why the skimmer potential 

measured was not at zero when applied voltage was zero in the arrangement A and B. 

Peak Shape and Matrix Effects 

The shapes of ion signal peaks became broadened and split as the floating voltage 

increased. Increasing the bias voltage of the quadrupole rods to more positive values would 

improve the shapes of ion peaks and prevent splitting. Matrix effects were slightly 

improved, but were not as desirable as hoped. 

Effect of Voltage on Aerosol Injection Tube 

The Co^ sensitivity as a function of voltage applied to the metal aerosol injector tube 

is shown in Figure 10. Both the sampler and skimmer were grounded at this time. The 

experiment was initiated with the injector tube grounded (0 V) through its power supply. 

At 0 V, the Co^ signal was similar to that obtained with a standard quartz injector tube. 

Signal decreased when a positive voltage was applied to the injection tube. Ion signal grew 

slightly as a negative voltage was applied. The signal increased substantially at voltages 

more negative than -300 V, but at potentials more negative than -360 volts, a strong 

discharge occurred between the injector tube and sampler. Sensitivity for Co^ could be 

improved by 60% with -350 V applied to the injection tube. As described above, either 

applied positive voltages on the interface or negative voltages on the injector tube, or the 
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plasma, would improve ion transmission, perhaps for similar basic reasons. 

Table V shows that the voltage measured on the sampler was strongly affected by the 

voltage applied to the injector tube when both sampler and skimmer were floated. The 

measured voltages on the sampler was always 80 volts more positive than that applied to the 

injector. The measured voltage was -5 V when the injector was floated, which was similar 

to the normal quartz injector. The potential in the immediate vicinity of the injector tip 

should be - 85 V if the 80 V difference was also true with the floating injector. Koppenaal 

and Quinton (23) measured the potentials in a plasma with a Langmuir probe. They reported 

that the potential values became less negative as the Langmuir probe approached the sampler 

orifice from the quartz torch and coil region of the plasma. The potential was - 30 V in the 

immediate vicinity of the aperture and was - 90 V at the end of the torch. The potential 

difference was 60 V. The difference between the sampler aperture and the torch tip should 

be larger than 60 V. Our experiments showed a similar trend. 

These experiments showed that the ion signal could be affected by applying a voltage 

to the injector tube. This result is surprising because the injector is outside the plasma and 

is well upstream (—40 mm) from the sampling orifice. While the observed increase in ion 

signal is certainly welcome, the underlying reasons are not at all clear. Further experiments, 

such as plasma potential measurements with a floating Langmuir probe (23-25), are 

necessary to clarify the fundamental reason for the observed influence of injector voltage 

on ion signal and to determine if this is a general phenomenon. 
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CONCLUSION 

This paper describes three different floating arrangements of the sampling interface. 

Sensitivity can be improved by a factor of 4 to 6, therefore, detection limits are improved 

also. The linear dynamic range of a calibration curve was extended. Mass discrimination 

was greatly reduced. All these experiments were just empirical. Perhaps further 

improvements are possible if some understanding of the underlying reasons can be 

developed. Further research combining different floating arrangements with different ion 

optic modifications, such as grounding one or two ion lens electrodes (26), or offset ion lens 

(26,27), would reduce space charge effects, and hence eliminate matrix effects. Deeper 

research with applying voltage on the injector tube and changing the injector tube position 

would further improve sensitivity and detection limits, and may give us some fundamental 

information about the ICP-MS interface. 
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Table I. Optimal operation condition for tiie ICP-MS system 

Component Operation conditions 

Plasma forward power 

Plasma reflected power 

Plasma argon gas flow 

Auxiliary argon gas flow 

Aerosol argon gas flow 

Sampling position 

Expansion chamber pressure 

Second stage pressure 

Third stage pressure 

Ion lens setting 

first cylindrical lens 

second cylindrical lens 

third cylindrical lens 

fourth cylindrical lens 

photon stop 

differential pumping orifice 

ELFS lens 

ion exit lens 

1.30 kW 

< 5 W 

17 L min-' 

0 

1.30 Lmin' 

13 mm from load coil, on center 

2.35 torr 

5x10^ torr 

2x10"® torr 

-250 V 

-10 V 

-30 V 

-170 V 

-14 V 

-100 V 

-20 V 

-150 V 
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Ion deflecting plate +700 V 

Detector housing aperture - 250 V 

Channelti-on electi^on multiplier 

pulse counting -3000 V 

ion current -2500 V 

Quadrupole rod mean dc potential +1,0 V 
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Table IL Co sensitivity and detection Umit in floating interface systems and grounding 

interface system 

Sensitivities Detection limit 

Interface arrangement (counts s"' ppm ') (ppb) 

Sampler & skimmer grounded (Fig. 2) 1.0x10® 0.060 

Sampler & skimmer biased together (Fig. 3A) 4.0x10® 0.015 

Sampler floating & skimmer biased (Fig. 3B) 6.0x10® 0.010 

Sampler grounded & skimmer biased (Fig. 3C) 5.0x10® 0.012 
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Table m. Measured element sensitivities expressed in terms of atomic concentration. 

Sensitivities (counts s"' mM ') 

Interface arrangement Co Rh Ho 

Sampler & skimmer grounded (Fig. 2) 5.6x10' 8.5x10' 2.2x10» 

Sampler floating & skimmer biased (Fig. 3B)" 3.5x10» 3.3x10» 3.0x10» 

The voltage applied to the skimmer was +30 V. 
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Table IV. Influence of voltages applied to both sampler & skimmer together on Co ion 

kinetic energies 

Interface arrangements Co ion energies (eV) 

Sampler & skimmer grounded (Fig. 2) 4.4 

Sampler & skimmer biased (V) (Fig. 3A) 

0 7.4 

10 11.0 

>20 >15 
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Table V. Influence of voltages applied to injection tube on potentials measured on sampler" 

Injector voltage (V) Voltage measured on sampler (V) 

floating -5 

- 120 - 40 

0 +80 

+ 120 +200 

"Both sampler and skimmer were floated. 
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Figure 1. Schematic diagram of ICP-MS instrument: (A) ICP; (B) ion extraction 

interface; (C) port to rotary pump; (D) ion lens; (H) quadrupole mass 

analyzer; (F,K) ports to diffusion pumps; (L) ion exit lens; (M) 

Channeltron detector; (T) ion deflection plate. 
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Figure 2. A typical ICP-MS sampling interface (both sampler & skimmer grounded): 

(1) sample aerosol; (2) ICP torch; (3) load coil; (4) sampler; (5) skimmer; 

(6) ion beam to mass analyzer. 
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Figure 3. Diagrams of floating arrangements of sampling interface: (A) sampler & 

skimmer biased together; (B) sampler floated & skimmer biased; (C) 

sampler grounded & skimmer biased. 
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B 

(continued) 
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Figure 3. (continued) 
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Figure 4, Diagram of ICP torch with a stainless steel injector tube; (A) load coil; 

(B) ICP torch; (C) plasma gas in; (D) auxiliary gas in; (E) stainless steel 

injector tube; (F) aerosol gas flow containing sample; (G) DC power 

supply. 
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5 

E 10 mm 

Figure 5. Schematic diagram of ion lens system: (A) skimmer; (B) quadrupole mass 

analyzer; (1 - 4) first to fourth electrodes of ion lens; (5) differential 

pumping orifice; (6) ELFS lens into rod housing; (J) quadrupole mass 

analyzer; (7) photon stop. 
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Figure 6. Relative Co ion signal as a function of biassing voltages with interface 

arrangements of A (sampler & skimmer biased together) (•), B (sampler 

floating & skimmer biased) (•), and C (sampler grounded & skimmer 

biased) (A). 
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Figure 7. Linear dynamic range for interface arrangement A (sampler floated & 

skimmer biased) by 10 V (•) or 30 V (•) and conventional interface 

(sampler & skimmer grounded) (A). 
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Figure 8. Measured potential on sampler as a function of applied bias potential 

with interface A (sampler & skimmer biased together) (•), interface B 

(sampler floating & skimmer biased) (•), and interface C (sampler 

grounded & skimmer biased) (A). 
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Figure 9. Measured potential on skimmer as a function of applied bias potential 

with interface A (sampler & skimmer biased together) and interface B 

(sampler floating & skimmer biased) (•), and interface C (sampler 

grounded & skimmer biased) (•). 
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Figure 10. Relative ion signal as a function of voltage applied to aerosol injection 

tube. 



www.manaraa.com

134 

PAPER IV. 

INDUCTIVELY COUPLED PLASMA ION SOURCE AND MASS SPECTROMETER 

FOR ION DEPOSITION OR ION IMPLANTATION 



www.manaraa.com

135 

INTRODUCTION 

As thin film technology has developed, film characteristics such as purity, defect 

concentration, adhesion, and the range of materials that can be deposited have been improved 

by using various deposition techniques. Vacuum evaporation, various modes of sputtering, 

and ion plating have been well documented as to their suitability for a wide range of thin 

film applications (1-4). Unfortunately, such techniques also deposit undesirable foreign 

impurities within the film (5, 6). These impurities may come from the original source of 

the depositing particles. Another disadvantage of "conventional" techniques is that the 

energy of the depositing particles is uncontrolled. 

Direct ion beam deposition is defined as a film formation method which exploits 

mass-separated, low-energy metal ion beams of the film constituents. Intensive work has 

already been reported recently for a variety of materials including metals and semiconductors 

(7-28). From the application point of view, ion beam deposition with finely controlled 

stoichiometry is useful for the fabrication of compound semiconductor devices which will 

be useful as high-speed, high-frequency devices and optoelectronics devices. Similar 

methods should be useful for the formation of very thin multilayers. 

If the ions are accelerated to high ion energies, they penetrate more deeply into the 

solid target material, and ion implantation occurs. The principles and applications of ion 

implantation have been investigated and reported in detail elsewhere (29-33). 

The basic requirements of an ion beam deposition facility for the production of high-

purity, adherent thin films are as follows. First, the ion source should be as clean as 
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possible to maintain film purity. Second, the arrival energy of the depositing ions should 

be easily adjustable. Third, the arrival rate of the material to the substrate should be such 

that the film is deposited within a reasonable time. Finally, the pressure in the target 

chamber must be sufficiently low that residual gas contamination is minimized during 

deposition. 

The ICP is a versatile, multielement ion source based on an atmospheric pressure 

plasma. Atomic ions are generated from all the sample constituents at the same time, so 

mixtures of such ions can be extracted for deposition. Samples of the element(s) to be 

deposited are generally added to the plasma as aqueous solutions. Thus, the concentration 

of ions in the plasma can be changed easily by varying the concentration of the element(s) 

in the solution. Because of the high temperature ( ~ 6000 K) and long residence time, atomic 

ions from elements that form refractory oxides such as Ta or rare earths are easily made. 

The ICP was originally developed for film and crystal growth (34, 35), in which the 

crystal was grown on a solid probe that was inserted directly into the plasma. All atoms and 

ions in the ICP were deposited on the substrate at very high deposition rate. Merkle et al. 

successfully developed a technique utilizing an ICP combined with a low-pressure deposition 

chamber for deposition of thin films (36). The interface was similar to that used to extract 

ions for ICP-MS. The substrate was located behind the skimmer, so the deposition rate was 

not as high as when the substrate was inserted directly into the plasma (34,35). The film 

deposited with this method had less impurities because the target was in the deposition 

chamber with at 4x10"^ ton*. But large amount of impurities extracted from the plasma were 

still deposited on the substrate and residual gas at this pressure could also cause reaction in 
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the film. 

Since the publication of the first ICP-MS paper in 1980 (37), especially, since the 

introduction of the first commercial ICP-MS instrument in 1983, the technique has gained 

rapid and wide acceptance in many analytical laboratories. Because of its sensitivity, 

minimal interferences, capability for multielement analysis, and analysis of isotope ratios, 

ICP-MS is used in many disciplines for the analysis of environmental, geological, 

metallurgical, nuclear, and industrial samples. 

One problem for using an ICP as ion source for ion deposition or ion implantation 

is ion beam intensity. Generally, an ICP-MS instrument can generate a mass-resolved beam 

of ~ 10' ions s" per ppm in solution. If all mass-resolved ions from a 500 ppm solution are 

deposited on a substrate with area 1 cm^, 56 hours are needed to deposit just one layer. This 

is not acceptable for most practical applications. In order to successfully use the ICP-MS 

as ion source for ion deposition, the ion beam intensity should be raised to a reasonable rate 

so that the film is built up within a reasonable time. 

Usually, an ICP-MS instrument has three stages. Ions are extracted from the 

atmosphere pressure ICP to the first expansion chamber at a background pressure of a few 

torr. The ion beam then passes through the second stage at 1x10^ torr. The analyzer and 

detector chamber is kept at 10 ^ -10^ torr. This pressure is not low enough to maintain film 

purity and reactions of film components with residual gas might contaminate the thin film. 

The present work reports initial experiments in the adaptation of ICP-MS for ion 

deposition. A solution containing the elements of interest is nebulized. This sample aerosol 

is desolvated and injected into the ICP, where the sample is vaporized, dissociated, and 
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ionized. A portion of the plasma is extracted through an interface into a vacuum chamber. 

Ions are collected by ion optics and sent to a quadrupole mass analyzer, while neutrals are 

pumped away. This ion beam is then mass selected by the quadrupole mass spectrometer 

and deposited on the substrate. The mass transmitted can be changed rapidly and easily, so 

the stoichiometry of the ion mixture deposited on the target can be easily varied. 

Thin films can be deposited softly on the surface of the target at a relatively low 

energy, or ions can be implanted deeply into the target at relatively high energy. In the ICP-

MS system, ion energies are initially only a few eV, and the deposition energy can be easily 

controlled by changing the target bias potential. The instrument is modified to increase the 

ion intensity to about 5x10" ions s"' from a 1000 ppm solution. A four-stage vacuum system 

is used. The pressure in the deposition chamber is reduced to l.SxlO"' torr. The target is 

kept at this relatively low pressure, so that side reactions of the deposited materials can be 

minimized. 
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EXPERIMENTAL 

Two ICP-MS ion beam deposition instrument have been studied. First, the original 

three-stage ICP-MS (33-35) was used for maximizing ion beam intensity and for preliminary 

ion deposition experiments. Second, a new four-stage ICP-MS ion beam deposition device 

was constructed based on improvements identified from initial experiments with the old ICP-

MS. 

Old Instrument 

The original ICP-MS, most components, and operating conditions have been 

described in detail elsewhere (38-41) and in paper III (see Figure 1 and Table I, paper HI). 

The sampler and skimmer orifices were 0.79 mm and 1.09 mm diameter, respectively. The 

sampler - skimmer spacing was 9 mm. The pressure in the first, second, and ion deposition 

chamber were 1.2, 1x10^, and 4.5x10"® torr, respectively. The sampling position was 10 

mm. A highly concentrated deposition solution (5(K) ppm) was nebulized by a continuous 

flow ultrasonic nebulizer (42,43). The solutions were delivered with a peristaltic pump 

(Gilson Model Minipuls 2) at a rate of 2.0 ml min \ The aerosol was desolvated in a pyrex 

heating tube at 140 °C followed by a condenser at 0 °C. Roughly 10% of tiie nebulized 

sample was transported out of the spray chamber. The remaining 90% ran into the drain of 

the spray chamber. This waste solution was circulated by pumping it back to the main 

solution container with a peristaltic pump. The ion deflecting plate was replaced by a target 

for ion deposition or ion implantation. Because the substrate was inserted perpendicular to 
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the ion exit axis, ions had to be deflected over a long distance (6 cm) to hit the target (see 

Figure 1, paper HI). The ions did not form a collimated ion beam without an RF-only 

quadrupole after the mass filter and were further defocused as they left the mass analyzer, 

which complicated the task of steering them onto the target. 

Improvement of Interface and Ion Lens for Old ICP-MS Device 

To obtain an intense ion beam, a highly concentrated solution was used. Solid 

condensed from the highly concentrated solution easily plugged the usual l.(X) mm diameter 

sampler orifice. Drilling the orifice to 1.31 mm diameter prevented this ion condensation 

problem (44). The ion beam intensity also increased with the larger sampler and skimmer 

orifices (44). 

After extraction through the interface, the ion beam was focused in the ion optics. 

In order to intensify ion beam, the ion lens was modified (Figure 1). The first, second, 

third, and fourth electrodes of ion lens were a perforated stainless steel cylinder, a copper 

cone, a stainless steel cylinder, and a stainless steel tapered cylinder, respectively (1-4, 

Figure 1). The usual photon stop was removed for improving ion transmission. Some 

neutrals and photons were blocked by the second electrode, which was a copper cone. The 

ions then passed a differential pumping orifice (2.5 mm diam. x 6.4 mm long) and were 

injected into the quadrupole. 

New ICP-MS Ion Deposition Device 

A new ICP-MS ion deposition instrument was constructed based on the lessons 
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learned with the old device. A schematic diagram of this new ICP-MS ion beam deposition 

instrument is shown in Figure 2. A commercial continuous flow ultrasonic nebulizer (Model 

U-5000, CETAC Technologies, Inc.) was used to nebulize the sample solution. The 

interface and ion lens were the same as those described above. Most other instrument 

components in this device were described elsewhere (44). A rigorous treatment of particular 

components of interest follows. The general operation conditions are identified in Table I. 

The quadrupole mass filter used in this work was coupled with both entrance and exit 

RF only quadrupoles. The schematic diagram of the power connection and coupling of 

quadrupole filter with RF-only quadrupoles is shown in Figure 3. This component was 

described in detail elsewhere (44). 

As described above, the pressure in the substrate chamber must be sufficiently low 

that residual gas contamination is minimized if a high purity film is desired. The last stage 

(ion beam deposition chamber) was pumped with a turbomolecular pump (Model TMP 360V, 

Leybold Vacuum Products Inc.; Pumping speed, 400 L s"'). A stainless steel tube, 2.54 cm 

long X 0.625 cm inside diameter served as differential pumping aperture. The pressure in 

this chamber was lowered to 1.5x10"^ torr which was at least 10 times lower than that 

obtmned with general ICP-MS instruments and about 30 times lower than the pressure 

obtained with the old ICP-MS device described above. One of the other advantages of low 

pressure in deposition chamber is that a higher target potential can be applied for ion 

implantation. A Channeltron electron multiplier was used to monitor the ion beam intensity 

before and after ion deposition. 

A substrate interlock chamber for inserting the target was constructed and is shown 
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in Figure 4. This chamber was pre-evacuated by a mechanical vacuum pump (Model 1402, 

Welch Scientific Company) before opening to the ion deposition chamber, hence, vacuum 

was not broken when the target was changed. The target could be changed in 5 - 10 

minutes. 

Substrate 

Generally, a graphite target (0.36 cm^ surface) was used as the ion deposition 

substrate because of its softness, low sputtering efficiency at low ion kinetic energy, high ion 

deposition efficiency, good adherence, and resistance to dissolution in acid. The target was 

polished with 600-A grit SiC paper (3M) to a final dimension of 6.0 mm diameter x 3.0 cm 

long. Before a deposition experiment, the substrate was cleaned by the following 

procedures. The substrate was first immersed in 1 % HNO3 for 1 hour, then immersed in 

distilled deionized water for 2 hours, then dried. Finally, the substrate was cleaned 

ultrasonically with acetone and then methanol and then dried again. 

A titanium oxide (Ebonex) target (0.25 cm^) was also used with the old ICP-MS 

instrument (see Figure 1, section III). Like the graphite, the titanium oxide did not dissolve 

readily in HNO3. It was polished by 600-A grit SiC paper followed by 0.5 fim alumina 

powder (Buehler Ltd.) and was cleaned in the same way as graphite. 

Either substrate was mounted onto a copper substrate holder which was mounted onto 

an electrical feed through (U, Figure 4) which was welded to the tip of the insertion probe 

(T, Figure 4). The voltage was applied to the substrate through an electrical feedthrough 

within the hollow probe. 
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Experimental Procedures 

Ions selected by the mass spectrometer were first detected by a Channeltron electron 

multiplier. A 1 ppm solution of the element to be deposited was used to maximize the ion 

beam intensity by adjusting ion lens voltages, aerosol gas flow rate, and sampling position. 

The procedures of handling the substrate target with the both old and new devices were 

similar to each other, therefore only the methods and figures for operating the interlock 

chamber with the new device was described. 

Following optimization, the voltages on the detector, detector housing aperture, and 

ion repeller were turned off. The substrate was moved from the interlock chamber (see 

Figure 4A) to a position 10 mm behind the ion exit tube (differential pumping tube) (see 

Figure 4B). The substrate was cleaned by sputtering with '*°Ar'^ at 2.5 keV for 10 min. 

Conveniently, these Ar ions were always present in the plasma. The desired voltage was 

then applied to the target for ion deposition or ion implantation. Highly concentrated 

solutions (500 ppm for the old device, 1000 ppm for the new device) were nebulized. 

Deposition times varied depending on the ion dose desired. For these exploratory 

experiments, the deposition time was usually 2.5 - 3.0 hours. After deposition, the target 

was removed through the interlock. The deposited thin film was then dissolved into 1 - 5 

ml 5% HNO3 solution for 1 hour. This solution was diluted to 10 -100 ml with distilled 

deionized water, depending on the ion dose. The concentration of deposited material in the 

solution was determined by a different ICP-MS (SCIEX Elan 250, Perkin-Elmer) with a flow 

injection method. The data were converted into ion deposition rate (ions s"'). The above 

target was dissolved again. A blank substrate was also dissolved with the same method 
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described above. Both solutions were also analyzed by the ICP-MS. There was no 

detectable Ho in these two solutions, which meant that all Ho atoms deposited on the 

substrate were dissolved and any Ho atoms in the original substrate were insignificant 

compared to the deposited Ho. 

Standards and Solutions 

A Ho^ solution at 500 ppm was prepared by diluting 1000 ppm Ho (Atomic 

Absorption Standard, Fisher Scientific Company). Standard solutions at 1 ppm were 

prepared by diluting aliquots of commercial stock solutions (Fisher) with distilled deionized 

water (18 MO, Bamstead). The 5% HNO3 was prepared by diluting ultra pure acid (Ultrex 

n ultrapure reagent grade, J. T. Baker) in distilled deionized water. 
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RESULTS AND DISCUSSION 

Ion Deposition with Old ICP-MS Instrument 

The measured Ho ion deposition rate (ions s ') on titanium oxide as a function of ion 

kinetic energy is dq)icted in Figure 5. The deposition rate was highest at 350 eV. The ion 

beam intensity at this ion energy was 3.5x10? ions s \ which represented a total of about 

4x10" atoms deposited on the substrate. At this intensity value, 19 hours would be required 

to deposit one layer of Ho atoms on the titanium oxide substrate. Definitely, this intensity 

is too low for practical ion beam deposition. 

When a high potential (above 4.5 kV) was applied to the target, a strong discharge 

occurred. Ion implantation experiments could not be done in this ICP-MS instrument. 

Improve Merits in Ion Beam Intensity with Old Instrument 

The old apparatus (Figure 1, section IE) was used to evaluate the following ways to 

increase ion beam intensity. First, ion beam intensity increased about 6-8 fold by enlarging 

the sampler orifice from 0.79 mm to 1.31 mm (44) and another two fold by drilling the 

skimmer orifice from 1.09 mm to 1.31 mm. Second, ion beam intensity increased about 3 -

5 fold when the entrance of the first ion lens electrode (1, figure 1) was moved closer to 

the skimmer tip (44). Third, ion beam intensity increased about 3-5 fold by removing the 

photon stop, and by using a cone for the second ion lens electrode and a tapered cylinder for 

the fourth ion lens electrode. In total, the ion intensity increased about 100 -400 fold by 

these simple changes to the interface and ion optics. 
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Ion Deposition with New ICP-MS Ion Deposition Device 

Based on the results of the above experiments, a new device was built especially for 

ion deposition, which featured entrance and exit RF only quadrupoles and a ion exit 

focusing tube. Also the substrate was placed right after the ion exit tube. The reasons for 

using RF only quadrupoles were to inject the ion beam efficiently into the mass analyzer and 

to focus the ions to a fine beam for better ion beam transmission through the small diameter 

exit lens. The substrate right after the exit lens should collect all ions more efficiently than 

when the substrate was perpendicular to the ion path. 

The measured Ho ion deposition rate on the graphite substrate as a function of ion 

kinetic energy is shown in Figure 6. At low ion energy, the deposition efficiency increased 

as the ion energy increased. Optimal ion energies were between 50 eV and 2000 eV. For 

ion kinetic energies in the range of 2 - 3 keV, both the substrate and previously deposited 

Ho atoms were sputtered, consequently, the amount of Ho that remained on the substrate was 

reduced. With a further increase in the ion kinetic energy, above 2.5 kV in Figure 6, ions 

were driven deeply enough into the target that they were not sputtered back out by 

subsequent Ho ions. Therefore, the deposition rate increased again. The highest ion 

deposition rate was about 5x10" ions s ' (see Figure 6). The highest total amount of Ho on 

the graphite substrate for 2.5 hours deposition was about 4.0x10'® ions. The time of 

deposition of one layer film on the graphite substrate (area = 0.36 cm^) would be about 1.1 

minutes. 

These values for ion dose and deposition time represented improvements of a factor 

of more than 1000 than those obtained with the old device. Furthermore, specious electrical 
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discharges in the target chamber were not observed at any of the target voltages used. The 

5 kV limit in Figure 6 represented the maximum rating for the feedthrough on the insertion 

probe that held the target. In other experiments with much lower ion counts, up to 18 kV 

was applied to the target of a Daly detector in this chamber without electrical discharge (44). 

It is likely that ions could be implanted deeper still by biasing the substrate to a high voltage. 

Purity of Ion Deposition 

One source of impurity in ion deposition comes from reaction with the residual gas 

in the deposition chamber. The impurity from residual gas in the deposited thin film can be 

expressed as; 

X = (SnTn)/iSiTi) (1) 

where Fn is the residual gas atom flux that hits the target surface and Ti is the depositing 

ion beam flux on the target surface. Here Sn and Si denote the sticking probabilities of 

residual gas atoms and of deposited ions, which are assumed to be 0.01 and 1, respectively. 

The quantities F/i and Ti are expressed as (45): 

rn = 5.30 X lO^o P (cm-" s ') (2) 

Ti  = 6.25 X 10'2 Ji (cm-" s'^) (3) 

where P (torr) is the residual gas pressure in the deposition chamber (45) and Ji (^A/cnf) 

is the ion beam current density impinging the target (45). The ion beam intensity in our 

modified ICP-MS ion beam deposition system is 5x10'" ions s-\ e.g., 8x10"' A or 0.8 fiA. 

The target surface area is 0.36 cm" and the residual pressure in the deposition chamber is 

1.5x10-' torr. So, the calculated amount of impurity in the deposited thin film on 0.36 cm" 



www.manaraa.com

148 

target surface is about 5.7%. Even though this purity is good enough for many ion 

deposition applications, further reductions in residual pressure or increase in ion beam 

intensity are still desirable. 

Detection Efficiency of Channeltron Detector 

Suppose all the ions that left the ion exit lens stuck on the graphite substrate, the 

detection efficiency (Y) of the Channeltron detector can be calculated as; 

Y = G/H 

where G is the ion count rate (ions s ") detected by the Channeltron detector and H is the ion 

beam intensity (ions s ') deposited on the substrate. The highest ion count rate detected by 

Channeltron detector is 5x10^ ions s"' per ppb when low mass resolution and a low threshold 

for the amplifier-discriminator are utilized. The best ion beam intensity is 5x10® ions s"' per 

ppb by presuming the dynamic range to be linear up to 1000 ppm. Therefore, the detection 

efficiency of the Channetron detector, Y, is about 10%, i.e., if 10 ions pass through the ion 

exit lens, only one ion is detected. Presumably, this 10% efficiency represents a 

juxtaposition of a) incomplete collection of ions (i.e., some ions that leave the exit lens do 

not strike the mouth of the detector, and b) incomplete conversion of ions to electrons. This 

estimate represents the most favorable case for the Channeltron detector. If the probability 

of deposition is not 1 and the upper end of the linear dynamic range is less than 1000 ppm, 

the detection efficiency of the Channeltron detector is even less than 10%. Thus, if the ion 

dose is to be estimated with a Channeltron detector, a correction must be made for this low 

detection efficiency. 
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CONCLUSION 

An ICP ion source can be combined with a mass spectrometer for direct ion beam 

deposition or ion implantation. The basic requirements (high ion intensity, low pressure in 

target chamber, controllable ion energy, and clean ion source) of ion beam deposition are 

all met by an ICP-MS ion beam deposition system. 

This initial research suggests the following follow-up studies with this new ion 

deposition and ion implantation system: a) modification of the electrochemical properties 

of metal oxide electrodes by doping them with impurity metal ions; b) deposition of thin 

films of interest such as pure refractory metals (W or Nb), diamond, or superconductors on 

appropriate substrates; c) deposition of mixtures of atoms; d) use of a secondary ion mass 

spectrometer for in-situ analysis of the deposited materials; and e) deliberate leaking of a 

reactive gas into the target chamber so that controlled chemical reactions between the 

deposited ions and added gas will yield the desired coating on the target. This objective 

should be achievable without changing composition or properties of plasma ion source. 

The observed ion intensity of 5x10" ions s * for 1000 ppm only represents 0.005% 

of the metal ions sampled from the ICP or -0.5% of the ions through the skimmer; 

substantial room for improvement remains in the efficiency of ion collection and transport. 

The deposition chamber should allow application of higher voltages to accelerate ions for 

implantation. Accelerating ions to very high ion kinetic energy by applying a high voltage, 

for example 5 kV, on the interface would improve ion beam intensity and implant ions even 

more deeply into the substrate. 
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Table I. Operating conditions for new ICP-MS apparatus (Figure 1) 

Component Operation conditions 

Plasma forward power 

Plasma reflected power 

Plasma argon gas flow 

Auxiliary argon gas flow 

Aerosol argon gas flow 

Sampling position 

Sampler - skimmer separation 

Expansion chamber pressure 

Second stage pressure 

Third stage pressure 

Fourth stage pressure 

Ion lens setting 

first cylindrical lens 

second copper cone lens 

third cylindrical lens 

fourth cylindrical lens 

differential pumping orifice 

ELFS lens 

1.30 kW 

< 5 W 

17 L min-i 

0 

1.30 L min ' 

13 mm from load coil, on center 

11 mm 

2.30 torr 

5x10^ torr 

5x10^ torr 

1.5x10' torr 

-260 V 

-60 V 

-250 V 

-180 V 

-200 V 

-200 V 
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Ion exit tube -50 V 

Ion deflecting plate +700 V 

Detector housing aperture -250 V 

Channeltron electron multiplier 

pulse counting -3000 V 

ion current -2500 V 

Mean DC voltage on mass analyzer -5.0 V 

Mean DC voltage on RF-only quad rods -65 V 
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Figure 1, Schematic diagram of ion lens system: (A) skimmer; (B) RF-only 

quadrupole; (1) perforated stainless cylinder, first electrode of ion lens; 

(2) copper cone, second electrode of ion lens; (3) stainless steel cylinder, 

third electrode of ion lens; (4) stainless steel taper cylinder, fourth 

electrode of ion lens; (5) differential pump orifice (DPP); (6) quadrupole 

ELFS lens. 
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4 ^5 cm 

Figure 2. New ICP-MS ion deposition system: (1) first stage chamber; (2) second stage chamber; (3) quadrupole 

chamber; (4) deposition chamber; (5) interlock chamber; (A) ICP; (B) ion extraction interface; (C) port to 

rotary pump; (D) ion lens (see Figure 2); (F) port to diffusion pump (1600 L s'^); (G) RF-only quadrupoles; 

(H) quadrupole mass analyzer; (K) (Q) ports to turbomolecular pumps (400 L s"^); (L) ion exit lens; (M) 

Channeltron electron multiplier; (N) deflection plate; (S) substrate or target; (T) target probe. 
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Figure 3. Electrical coupling between RF-only quad rods and mass filter. (1) RF-

only quadrupole; (2) mass analyzer; (3) 50 pF capacity; (4) 1 MO 

resistance; (5) mass filter power supply: RF plus DC; (6) DC power 

supply. 
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Figure 4. Interlock system at pre-evacuation stage (A) and deposition stage (B): (G) 

RF-only quadrupole; (L) ion exit lens; (M) Channeltron electron 

multiplier; (N) deflection plate; (Q) port to turbomolecular pump; (S) 

substrate or target; (T) target probe; (U) substrate holder and electrical 

feed through; (V) port to mechanical pump; (X) valve to deposition 

chamber; (Y) valve to mechanical pump. 
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Figure 4. (continued). 
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Figure 5. Measured Ho ion deposition rate (ions s"') as a function of ion kinetic 

energy for old ICP-MS device. Each point represents a deposition run of 

3.0 hrs, following by dissolution of the Ho from the titanium oxide and 

measurement of the Ho concentration by ICP-MS. 
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Figure 6. Measured Ho ion deposition rate (ions s ') as a function of ion kinetic 

energy for new ICP-MS device. Each point represents a deposition run 

of 2.5 hrs, following by dissolution of the Ho from the graphite and 

measurement of the Ho concentration by ICP-MS. The leftmost point 

corresponds to an ion energy of 10 eV. 
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SUMMARY 

The primary goal of this work has been the enhancement of ion transmission and 

reduction of background and interferences in ICP-MS. A new ICP-MS instrument has been 

constructed. Some improvements in instrumentation have been made. Enlarging sampler 

and skimmer orifîces increased ion signals and minimized solid condensation. Almost all 

photons and neutrals were blocked by the offset ion lens. Background was reduced to nearly 

the dark current. Because the offset ion lens only transmitted on-axis ions to the mass 

analyzer, polyatomic ion signals were much lower than on any other ICP-MS device. Matrix 

effects can be reduced without sacrificing much sensitivity by either grounding the first ion 

lens or re-adjusting the voltage applied to the first lens with the matrix present. Electrically 

floating the sampler and/or skimmer greatly improves ion transmission, detection limits, 

calibration linear range, and mass discrimination. An extra pumping stage and a small 

diameter long tube between third and fourth stages reduced the pressure in the fourth stage 

chamber to at least 10 times lower than that in usual ICP-MS. The Daly detector has been 

successfully used and a relatively pure thin film from ion deposition or ion implantation has 

obtained with this low pressure. Ion sensitivity or ion beam intensity has been increased 

about 1000 times, therefore, a thin film can be deposited in a reasonable time. 

The analytical characteristics of this new ICP-MS instrument suggest several possible 

areas for future research. Analytical instruments are never of much significance unless they 

are useful for analysis of real samples. Each different real sample contains a different matrix 

and causes different matrix effects, hence, causes errors. Analysis of real samples 
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containing complicated matrices with this ICP-MS should yield good results, especially by 

grounding the first electrode of the ion lens. For example, determination of trace vanadium 

and arsenic in seawater should be straightforward because of low polyatomic ion 

interferences from ClO^ and ""Ar^^Cl"*". With other ICP-MS devices, this measurement 

requires either high spectral resolution or chemical removal of the chloride matrix. 

The direct injection nebulizer (DIN) exhibits a lot of advantages for ICP-MS (104). 

The amount of water introduced by the DIN is much more than with other nebulizers; 

polyatomic ions containing oxygen and metal oxide ions are substantial. Combining the DIN 

with this ICP-MS may confine the advantages of efficient sample introduction and low 

polyatomic ion interferences. 

Ion sensitivity with this ICP-MS is somewhat lower than that measured by 

commercial instruments. The possible source of ion loss is from the offset ion lens used. 

A number of future projects employing the ion lens are envisioned. The first involves 

further refinement and modification of the offset ion lens. The ion transmission might be 

improved by changing the diameter of aperture of each electrode of ion lens, changing the 

separation of two nearby electrodes of the ion lens, and using more offset plates instead of 

only four. Second, we have shown that ion transmission is improved by electrically floating 

the sampling interface with a straight conventional ion lens. Ion transmission might also be 

improved when the sampling interface is floated with the offset ion lens. 

Several application studies also can be investigated with the ICP-MS ion deposition 

or ion implantation technique. One such project involves continuously modifying the 

electrochemical properties of metal oxide electrodes by doping them with small amounts of 
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impurities metal ions, such as Bi or Sb. It was reported that electrocatalysis could be studied 

by ion implantation (105). Some interesting studies in electrocatalysis can be done with the 

ICP-MS ion implantation system because mixtures of different elements can be deposited 

easily in any desired stoichiometry by introducing a multielement sample into the plasma. 

Another project involves depositing thin films of refractory metals, diamond, or 

superconductors on appropriate substrates. 

An ion trap mass spectrometer could be interfaced more easily to an ICP by using 

an offset ion lens. One major difficulty in using an ion trap is how to block the total particle 

beam while the ions are trapped. Nearly all photons and neutrals are blocked by our offset 

ion lens. All ions would be blocked by applying a high positive potential on one electrode 

of the ion lens. When appropriate negative voltages are pulsed onto the ion lens, ions will 

pass through to ion trap for storage and mass separation. Conceivably, high spectral 

resolution, i.e., separation of polyatomic ions from analyte ions, is possible in a relatively 

compact instrument with an ion trap (106,107). 
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